
Basins of Attraction in
Cellular Automata
Order–Complexity–Chaos in Small Universes

1 992 saw the publication of The Global Dynamics of Cellular Automata [1]. (See
Stuart Kauffman’s review in this issue, page 47.) This book developed the
notion of basins of attraction in one-dimensional binary cellular automata

(CA), together with an “atlas” for two entire categories of rule-space. CA had usually
been represented just by their space-time patterns, typical trajectories from various
initial states. A state is the pattern of 0s and 1s at a given time-step. If a trajectory is
an example of local dynamics, then all possible merging trajectories sum up the
system’s global dynamics.

CA are very simple discrete dynamical networks where each “cell” simulta-
neously updates its value as a logical function of its own value and its close neigh-
bors. In one dimension the cells form a ring. The possible logics that can be applied,
rule-space, give rise to a range of recognizable behavior in space-time patterns, from
order to “chaos,” and also to complex dynamics at the transition, according to
various static rule parameters [1,2]. Complex dynamics, where interacting particles
or gliders take over, make CA especially interesting as an example of the emergence
of complex spatial pattern in the simplest possible system. In this case behavior

can be described at a higher level, by a
catalog of gliders and their interac-
tions, quite apart from the underlying
“physics.”

To achieve the global perspective, I
devised a general method for running
CA backwards in time to compute a
state’s predecessors with a direct reverse
algorithm. So the predecessors of prede-

cessors, an so on, can be computed, re-

vealing the complete subtree including the “leaves,” states without predecessors, the

so-called “garden-of-Eden” states.

Trajectories must lead to attractors in a finite CA, so a basin of attraction is

composed of merging trajectories, trees, rooted on the states making up the attractor

cycle with a period of one or more. State-space is organized by the “physics” un-

derlying the dynamic behavior into a number of these basins of attraction, making

up the basin of attraction field.
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CA are very simple discrete
dynamical networks where
each “cell” simultaneously

updates its value as a logical
function of its own value and

its close neighbors.

© 2000 John Wiley & Sons, Inc., Vol. 5, No. 6 C O M P L E X I T Y 19



The earliest reference I have found
to this, as just a concept, is Ross Ashby’s
“kinematic map” [3]. The terminology I
use is borrowed in part from continu-
ous dynamical systems, where attrac-
tors partition phase-space. There are
many analogous properties such as
“chaos” with sensitivity to initial condi-
tions, but also notable differences. For
example, in these discrete systems tra-
jectories are able to merge outside the
attractor, so the root state of each sub-
tree makes a subpartition, as well as the
attractors themselves.

This is important in understanding
categorization, or memory, in discrete

networks, where Boolean networks are
applied to model both neural networks
[4] and genetic regulatory networks
[5,6]. Boolean networks are a general-
ization of CA where the connections
and logic may be different at each cell.
However, the same basin of attraction
concepts apply. Following the CA re-
verse algorithm, I devised a Boolean
network reverse algorithm so their
basins of attraction can also be com-
puted [4].

For CA, with both the local and glob-
al perspective available, comparisons
can be made between measures on
space-time patterns and measures on

the basins of attraction, and also with
static rule parameters [7]. Order-
complexity-chaos in space-time pat-
terns is recognizable to the subjective
eye, but there are also objective mea-
sures that closely correlate, such as the
variance of input-entropy.

Examples of measures on basins of
attraction are the number of attractors,
attractor periods, and the length of
transients. It turns out that a key mea-
sure is the typical branchiness or bushi-
ness of subtrees, whether states have
many predecessors or few (the in-
degree), relative to system size. This is
measured by the fraction of garden-of-

Space-time patterns from a random initial state, for ordered, complex, and chaotic rules, k = 5, n = 900. For the same rules, the basin of attraction
fields are shown in Figure 3 and subtrees in Figure 4. Top: ordered rule 0ldc3610, center; complex rule 6cle53a8, bottom: chaotic rule 994a6a65.

FIGURE 1
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Eden states (those with no predeces-
sors) and more precisely by the fre-
quency distribution of all in-degrees.

Ordered dynamics is highly conver-
gent, with high in-degree, resulting in
extremely bushy subtrees with a very
high fraction of garden-of-Eden states,
short attractor periods, and short tran-
sients because many states are used up
at each forward iteration.

Chaotic dynamics has low conver-
gence, low in-degree, with a low frac-
tion of garden-of-Eden states, long at-
tractor periods, and long transients be-
cause few states are used up at each
forward iteration.

Complex dynamics has intermedi-
ate convergence, with the frequency
of in-degrees following a power law
distribution.

For an in-depth study, see the re-
search article in Complexity [7]

THE IMAGES
These images are taken from an art
show, “Objective Wonder: Data as Art,”
held at the University of Arizona in
March 1999. Our exhibit was titled

“Complexity in Small Universes,” cre-

ated in collaboration with Chris Lang-

ton, and focused on the idea that com-

plexity is bounded by order and disor-

der in one-dimensional binary CA. A CA

can be regarded as a small formal uni-

verse with a very simple physics. More

images from the exhibit can be seen at

www.santafe.edu/˜wuensch/Exh2/

Exh3.html/.

The images were created with Dis-

crete Dynamics Lab (DDLab), my soft-

ware package for studying discrete dy-

namical networks, from cellular au-

tomata to Boolean networks, available

at www.santafe.edu/˜wuensch/ddlab.

html/, and reviewed in Complexity Vol.
3/No. 1. Further DDLab images with ex-
planatory notes are at www.santafe.
edu/˜wuensch/gallery/ddlab_gallery.
html/.

The images are labeled with the
neighborhood size, k, the rule number
(in hex for k5, in decimal for k3), and
the system size n, so they may all be
reproduced with DDLab.

Figure 1 shows space-time patterns
from a random initial state, for ex-

amples of ordered, complex, and cha-

otic CA. Space extends horizontally, and

successive states in time are plotted ver-

tically one below the other. Figure 2

shows another example of a complex

rule. In this presentation a cell’s color

depends on its neighborhood at the

previous time-step rather than its value,

0 or 1, and may be “filtered” to show up

the interacting structure more clearly.

The remaining figures show ex-

amples of basin of attraction fields,

single basins, and subtrees, for ordered,

complex, and chaotic CA. Those in Fig-

ures 3 and 4 are for the same rules as in

Figure 1.

These are computer-generated
graphs representing the “flow” between
states, where each unique state, a par-
ticular point in time in a space-time
pattern (a whole 1D horizontal slice), is
represented as a vertex in the graph. For
practical reasons of graph size and
computational load, the system sizes
are much smaller than for the space-
time patterns in Figure 1, though for
subtrees the size can be much larger
than for basin of attraction fields.

The space-time pattern of a complex rule (discovered by Wentian Li) showing a fractal structure. n = 150, k = 5, rule c3bce390.

FIGURE 2
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The basin of attraction fields of the same ordered, complex, and chaotic rules as in Figure 1 for space-time patterns and Figure 4 for typical subtrees.
n = 16, k = 5. Top: order, center: complexity, bottom: chaos.

FIGURE 3
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Each vertex has exactly one outgoing
arc because the system is deterministic,
but any number of incoming arcs (the
in-degree) from its predecessor vertices.
Vertices with zero in-degree are the

“leaves” of subtrees representing gar-
den-of-Eden states.

The graphs for subtrees consist of
arcs converging on a central vertex, the
root of the subtree. The graphs for ba-

sins of attraction consist of trees rooted
on an attractor cycle. If the attractor pe-
riod is one, the “point attractor” is
shown cycling to itself. Arcs between
vertices on the attractor are made

Typical subtrees for the same ordered, complex and chaotic rules as in figure 1 for space-time patterns, and figure 3 for basin of attraction fields. n = 40 for
the ordered rule (top), n = 50 for the complex rule (bottom), and for the chaotic rule see next page. The subtree root state is shown as a bit pattern.

FIGURE 4
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shorter with increasing period to con-
fine the attractor diameter, and in gen-
eral arcs are made shorter further out
from the attractor to contain the graph.
The direction of time is inward from
garden-of-Eden states toward the sub-

tree root or toward the attractor, and
then clockwise around the attractor
cycle.

For basin of attraction fields, equiva-
lent basins occur because of various ro-
tation symmetries of the periodic one-

dimensional CA [1]. Only one prototype
of each equivalent basin is shown.
Equivalent subtrees in basins of attrac-
tion can also be suppressed.

Colors are assigned (cycling through
4 colors) to successive nonequivalent

FIGURE 4 Continued

FIGURE 5 Continued
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subtrees rooted on attractor cycles or to
the arcs converging onto successive
states in subtrees and in basins with
very small attractor periods.

These graphic conventions have
been devised to give a clear impression
of attractor basins, but it should be re-
membered that the essential informa-
tion is how states are connected, not the
particular appearance of the basin im-
ages.

Typical single basins of attraction for other examples of ordered, complex, and chaotic rules. Top: n = 15, k = 3, ordered rule 250. Bottom: n = 18,
k = 3, complex rule 110. Previous page: n = 15, k = 3, chaotic rule 30.

FIGURE 5
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