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October 1996

Andrew Wuensche
ABSTRACT

New tools are available for reconstructing the attractor basins of discrete dynamical networks where
state-space is linked according the network's dynamics. In -this thesis the computer software
"Discrete Dynamics Lab" is applied to examine simple networks ranging from cellular automata
(CA) to random Boolean networks (RBN), that have been widely applied as idealised models of -
physical and biological systems, to search for general principles underlying their dynamics. The
algorithms and methods for generating pre-images for both CA and RBN, and reconstructing and
representing attractor basins are described, and also considered in the mathematical context of
random directed graphs.

RBN and CA provide contrasting notions of self-organisation. RBN provide models of
hierarchical categorisation in biology, for example memory in neural and genomic networks. CA
provide models at the lower level of emergent complex pattern. New measures and results are
presented on CA attractor basins and how they relate to measures on local dynamics and the Z
parameter, characterising ordered to "complex” to chaotic behaviour. A method is described for
classifying CA rules by an entropy-variance measure which allows glider rules and related complex
rules to be found automatically giving a virtually unlimited sample for further study.

The dynamics of RBN and intermediate network architectures are examined in the context of
memory, where categorisation occurs at the roots of subtrees as well as at attractors. Learning
algorithms are proposed for "sculpting"” the basin of attraction field. RBN are proposed as a possible
neural network model, and also discussed as a model of genomic regulatory networks, where cell
types have been explained as attractors.
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Overview

Discrete Dynamical Networks are central to our current perception of a wide range of natural and
artificial phenomena drawn from many areas of science; from physics to biology to cognition; to
social and economic organisation; to parallel computation and Artificial Life.

It can be argued that the dynamics of non-equilibrium parallel processing systems composed of
discrete interacting components create and maintain much of the complex biological phenomena that
dominate our world. Various types of discrete dynamical networks are increasingly being applied as
idealised models of physical and biological phenomena. For this reason, and also because of their
intrinsic interest as mathematical/physical systems, finding general principles underlying the
dynamics of the idealised networks themselves has become an important task. Their behaviour is
difficult to describe by classical mathematics using its tools of partial differential equations and
continuous dynamics. |

This thesis applies computer simulation tools developed by the author, known as "Discrete
Dynamics Lab" (DDLab) and available on the Internet (Wuensche 1996), to examine a range of
simple discrete dynamical networks ranging from cellular automata (CA) to random Boolean
networks (RBN). In particular local dynamics is placed in the context of the global dynamics of the
network represented by its basin of attraction field or fragment thereof. The terminology is borrowed
from the notion of the "phase portrait” which proved so powerful in continuous dynamics.
Constructing and visualising sub-trees, basins of attraction and the entire basin of attraction field of
discrete dynamical networks (referred to collectively as attractor basins), and relating their
characteristics to local dynamical trajectories was introduced in the anthor's book "The Global
Dynamics Cellular Automata” (Wuensche and Lesser 1992a). This thesis extends the investigation
into CA and embarks into new areas involving RBN. New results of computer experiments are
presented, some of which are preliminary based on work in progress, and lines of future enquiry are
described. The thesis also allows itself some interpretations, conjectures and speculations relating to
the results, and how these might provide insights into self-organisation and memory. It is hoped that
the distinction between hard results and more general discussion will be clear.

The capability of constructing attractor basins depends on reverse algorithms invented by the
author for directly computing the predecessors (known as pre-images) of network states. Different
reverse algorithms apply to CA and RBN, though the RBN method encompasses CA.

These methods are in general orders of magnitude faster than the brute force method,
constructing an exhaustive map resulting from network dynamics. This exhaustive method rapidly
becomes computationally intractable with increasing network size so is limited to small systems. It
applies to all network types and also allows the attractor basins of random maps to be constructed.
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These three independent methods together form a valuable reality check on the correctness of the
computed pre-images and attractor basins.

The CA reverse algorithm forms the basis for a trajectory donvergence parameter, named the
Z parameter (Wuensche and Lesser 1992a, Wuensche 1994a), a sort of inverse Liaponov exponent,
which predicts the bushiness of sub-trees in attractor basins. Measures of bushiness are captured by
"garden-of-Eden" density and more generally by the distribution of in-degree. It is shown that these
measures correlate with the quality of dynamics; ordered to chaotic, where order turns out to be the
most bushy, chaos the least. A histogram of the in-degree distribution shows contrasting profiles for
order and chaos, for complex rules the distribution seems to follow a power law.

Whereas RBN provide models in biology because of their non-local connections and
heterogeneous rules, CA provide models in physics with its notions of continuous space and
universal laws. Contrasting notions of self-organisation are apparent between the two systems. RBN
provide models of hierarchical categorisation in biology, for example memory in neural, genomic,.
and immune networks. CA provide models of self-organisation at the lower level of emergent
interacting space-time configurations, particles or "gliders", metaphors for the emergence of life
from the stuff of inanimate physics by a process of self-organisation.

In general, coherent space-time configurations cannot emerge in RBN because of their non-
locality. On the other hand, a CA's ability to flexibly categorise distributed patterns is subject to
severe symmetry constraints. Different and contrasting "edge-of-chaos", or phase transition, notions
are seen to apply to CA and RBN. In the case of CA, this is the phase in rule-space where glider
behaviour might emerge, quantified by rule parameters such as the A parameter (Langton 1990) and
the author's Z parameter, measures on the dynamics such as the "input-entropy” and its variance, and
by measures on the topology of attractor basins and sub-trees, such as the distribution of in-degree
(Wuensche 1994a).

In RBN, as applied to gene regulatory networks (Kauffman 1969, Somogyi and Sniegoski
1996), the phase transition represents the phase in the wiring/rule setup where categorisation of
patterns of gene activation, the network's memory, is sufficiently versatile for adaptive behaviour but
short of chaotic to ensure reliable behaviour. Tuning the degree of "canalisation” at the level of rules
(Kauffman 1984, Harris ef al 1997) moves behaviour across the transition, though the characteristics
of network connections also plays a role. A measure at the level of dynamics is given by the Derrida
plot (Derrida and Stauffer 1986), analogous to the Liaponov exponent in continuous dynamics.
There are further measures such as damage spreading, the percolation of frozen regions, input-
entropy over time relating to single genes, and the transient/frozen skeleton/attractor characteristics.

The body of the thesis goes on to discuss these ideas in depth, based on published work by the
author and work in progress. The introductory chapter describes and defines simple discrete
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dynamical networks ranging from CA to RBN and explains how network dynamics can be
understood globally in terms of attractor basins, Comparisons are made with attractor basins in
classical continuous dynamics. Previous work and applications in the field are discussed. Ideas of
emergence, phase transitions and various measures and parameters relating to CA and RBN
dynamics are introduced.

Chapter 2 looks more closely at the methods for constructing and portraying attractor basins.

Chapter 3 considers discrete dynamical networks and their attractor basins in the mathematical
context of directed maps in random graph theory. Discrete dynamical networks are a subclass of
random maps. Attractor basins of random maps, possibly incorporating some bias in the random
mapping, are amenable to probabilistic analysis, which can be checked against a numerical
reconstruction using DDLab. This is work in progress in collaboration with Christian Reidys (Reidys
and Wuensche 1997).

Chapter 4 focuses on CA and develops ideas first presented in the paper "Complexity in One-D
Cellular Automata” (Wuensche 1994a) and subsequent work. The reverse algorithm for generating
pre-images, and the Z parameter which derives from this procedure, are reviewed. The chapter looks
in particular at new measures and results on attractor basins and how they relate to measures on local
dynamics, characterising ordered to "complex" to chaotic behaviour, where complex behaviour
corresponds to Wolfram's class 4 (Wolfram 1984a). A method is described for classifying CA rules
by a measure of the variance of input-entropy over time. The method allows glider rules that support
coherent interacting configurations and related complex rules to be found automatically giving a
virtually unlimited sample for further study. Glider dynamics in CA is of prime interest as an
example of self-organisation and emergence in simple systems, where all aspects of the system can
be fully defined.

Chapters 5 focus on RBN, and develops ideas first presented in the papers "The Ghost in the
Machine"” (Wuensche 1993a) and "The Emergence of Memory” (Wuensche 1994b). Recent
collaborative work on RBN as models of genomic regulatory networks is also described.

The reverse algorithm for generating pre-images in RBN is explained. The dynamics of RBN
and intermediate network architectures are examined, in particular in the context of memory. The
notion of memory far from equilibrium, categorisation by the roots of subtrees as well as by
attractors is proposed. Algorithms for learning by "sculpting” the basin of attraction field are
described. The inverse problem of finding the set of minimal RBN that will satisfy a predetermined
set of transitions is discussed. Alternative methods for solving the inverse problem have recently
been formulated independently by Manor Askenazi (1996) and John Myers (1996). The biological
implications of memory far from equilibrium, and RBN or networks of RBN as the basis of a neural
network model is discussed.
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Chapter 5 goes on to discuss RBN as applied to model genomic regulatory networks, where cell
types are explained as attractors or "frozen skeletons” in the dynamics of the network. DDLab is
being used as a simulation platform for these models, and to extract various measures distinguishing
dynamics between order and chaos. The results and methods are described. This is work in progress

in collaboration with Stuart Kauffman and others, (Hams et al 1997, Somogyi and Smegoskl
1996a).

The thesis concludes with an overview of future work and open questions.
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Chapter 1

Introduction

1.1.  Discrete Dynamical Networks

A important challenge in science is the study of how complex behaviour at new levels of description
is able to emerge from simpler components and interaction laws. In biology there is a growing
awareness that self-organisation, as well as selection, is a force in evolution (Kauffman 1993,
Goodwin 1994). Understanding self-organisation in complex systems is basic to confronting the
enigma of how life and mind have emerged from matter.

One approach to such a quest is to model systems which are as simple as possible, yet support
complex emergent behaviour. Take a system where all parameters are discrete; space, value and
time. A collection of simple elements or "cells", sometimes referred to as "finite state machines”, are
connected up into a network by directed couplings. Each cell may be thought of as having one
output terminal and a set of input "wires" which are arbitrarily connected to available output
terminals. Each cell may take on a particular value or attribute, the cell's state, from a finite alphabet.
For simplicity the alphabet may be taken as binary, for example a network of light bulbs that are
either on or off. The state of each cell will depend on the states of the cells at the previous "time-
step"” that connect to it by its input wires, according to a logical rule. The rule can be thought of as a
lookup table, a logical expression or as a physical arrangement of the input wiring into a
combinatorial circuit with logical gates, AND, OR and NOT.

All cells update their states in parallel, that is synchronously, in discrete time-steps. An initial
on-off pattern is assigned to the network and the system is allowed to iterate; connections and local
rules stay constant. This is a dynamical system which moves through its set of all possible on-off
network patterns, its phase-space or state-space. The system is deterministic; any initial pattern will
result in one particular trajectory through state-space. It is dissipative; a given trajectory can merge
with others but cannot diverge (there is an asymmetric arrow of time). Given a network of finite size
any trajectory must eventually arrive at a repetitive sequence of network states, a point attractor or
state cycle attractor. Merging trajectories flowing to the attractor form a basin of attraction, an
object in space-time with a topology of trees rooted on cycles. Unravelling the structure of these
objects provides new insights into network dynamics and is the principal motivation of this thesis.



Traditional mathematical methods and analysis cannot in general provide a description of the
long term behaviour of discrete dynamical networks except for the simplest special cases. Their
study relies on the cycle of theory and experiment by computer simulation.

1.2. Random Boolean Networks

On-off systems as described above have been named "random Boolean networks" by Stuart
Kauffman (1969) after George Boole, the pioneer of symbolic logic. They have their roots in the
automata theory of Turing and von Neuman (Burks 1970) and in Ross Ashby's work on dynamical
systems and cybernetics (Ashby 1956,1960). More complicated networks with a range of cell states
exceeding two also conform to the dynamics described, but this thesis looks mainly at simple,
sparsely connected binary networks. Random Boolean Networks (RBN) may be applied to model
parallel processing systems with non-local connections typical in biology, for example in genomic
regulatory networks, in microbal ecosystems, in coevolution on NK fitness landscapes (Kauffinan
1969-93), in immune networks (for example Weisbuch ef al.), and in neural networks (Wuensche
1993¢,1994b). They have close affinities with "weightless" artificial neural network models -
(Alexander ez al. 1984).

1.3. Cellular Automata

In the special case where the connections in a network are made according to a regular geometry
with a universal rule, that is with the same rule and coupling template everywhere, and connections
to nearest neighbours or to a larger local "neighbourhood", the network is called a cellular
automaton (CA) with particular spatial dimension, geometry and boundary conditions.

CA provide perhaps the simplest systems that support emergent self-organisation. They are of
central interest in understanding complexity, chaos, and emergent phenomena. CA have been
extensively studied as models in physics, mathematics, computation and biology. They are examples
of discrete dynamical systems where large scale complex pattern formation may emerge from
disordered initial conditions as a result of just local interactions.

The study of CA also has its origins in the automata theory of Turing and von Neuman (Burks
1970). von Neuman is said to have invented the general notion of a cellular automaton (at the time
also called a tessellation structure or iterative circuit computer) to model self-reproduction following
a suggestion by Stanislaw Ulam. It cannot be a coincidence that this shortly followed von Neuman's
invention of one of the first programmable digital computers in the late forties. His unfinished
automaton or "universal computer-constructor”, completed and simplified by Authur Burks (1970),
comprised a Turing machine embedded in an infinite two-dimensional lattice with a neighbourhood



of 5 (cross shaped) and 29-states per cell. The machine constructs the configuration described on its
tape in a vacant area of the lattice together with a copy of the tape attached. Subsequent CA work
has shown that far simpler architectures are capable of both universal computation (Conway 1982,
Lindgren and Nordahl, 1990) and self-reproduction (Codd 1986, Langton 1984). Wolfram showed
that very simple one-dimensional binary CA may also exhibit complex behaviour (Wolfram
1983,1984a).

The upsurge of interest in CA has reflecting the availability of inexpensive computer power,
and can be traced back to John Conway (1982) and his remarkable "game-of-life" illustrated in
figure 1.1, and to Stephen Wolfram who made the first in depth investigation of 1d CA. Wolfram's
ultimate goal was "fo abstract from the study of cellular automata general features of "self
organising” behaviour and perhaps devise universal laws analogous to the laws of
thermodynamics" (Wolfram 1983). '

Chris Langton developed his concept of Artificial Life on the basis of CA (Langton 1986). He
and others proposed the idea of self-organisation emerging at a phase transition in rule-space, close
to the onset of chaos (Langton 1990, Li ef a/ 1990), with implication for the origin and evolution of
life. The discrete lattice gas automaton was invented by Brosl Hasslacher and others, promising a
general approach to solving partial differential equations and to parallel computation (Hasslacher
1987). .

There are many variants of CA and related systems, and a large literature has accumulated.
Notable variants include lattice gasses (Frisch er a/ 1986, Hasslacher 1987), spin-glasses
(Sherrington 1990), probabilistic CA, and continuous value CA or CA with a large alphabet or value
range. CA may be constructed with a longer memory where the "neighbourhood" extends into the
past beyond the previous time-step. A neighbourhood that includes a cell two time-steps back allows
the construction of reversible CA (Toffoli and Margolus 1987). Reversible CA have both an in-
degree and out-degree of one, allowing the system to be run deterministically both forward and
backward, thus are closer to classical physics with its symmetric arrow of time.

CA thus provide models in physics, in computation, and in the emergence of complex spatial
pattern. A CA may be regarded as a discretised artificial universe with its own local physics
(Langton 1990) or as a parallel processing computer (Wolfram 1984a,b) where the initial state
represents data to be processed.

1.4. Symmetries in Cellular Automata

In (Wuensche and Lesser 1992a) it was shown that there are a number of general constraints to CA
dynamics with periodic boundary conditions. These are reflected in the structure and topology of CA



attractor basins. They do not necessarily apply to random networks. The constraints relate to various
symmetries and hierarchies within state space and rule space, summarised below.

1. Rotation symmetry (the number of repeating segments in the bit pattern) is conserved. In a
transient, rotation symmetry cannot decrease over time; in an attractor cycle, rotation symmetry
must remain constant. In symmetric rules the same principles apply to bilateral symmetry.

2. Rotation equivalent states (that differ only by any rotation of the periodic lattice) are embedded
in equivalent behaviour. This has been described as shift invariance in (Wolfram 1986b), and
results in basins of attraction or subtrees with identical topology, but rotated states. Symmetries
within basins occur if a sequence of rotation equivalent states repeat in the attractor cycle;
transient trees with identical topology, but rotated states, will be rooted on the repeats.

3. Rule-space can be divided into symmetry categories by transformations within rule tables.

4. Equivalence classes and rule cluster relationships exist in rule space due to transformations
between rule tables.

As well as for 1d CA, these constraints apply equivalently to 2d CA (e.g. an orthogonal grid
with toroidal boundary condition), where the symmetries may occur in either or both of two
directions. DDLab automatically recognises these symmetries to show only equivalent basins of
attraction or subtrees, for example in figure 1.2 and 2.3. For 2d CA on a triangular grid, and for
higher dimensions equivalent but more complicated symmetry constraints apply.

These constraints severely limit CA as flexible categorises of state-space, though this may be an
advantage in some contexts such as pattern recognition. To achieve greater freedom for arbitrary
categorisation it is necessary to relax the architectural definition of the system to allow arbitrary
rules and connections - thus random Boolean networks.

CA and RBN provide contrasting notions of emergence and self-organisation. RBN provide
models in biology because of their non-local connections and heterogeneous rules. The hierarchical
categorisation implicit in their attractor basins, unconstrained by the symmetries found in CA,
provide models in biology, for example memory in neural, gene*, and immune networks. CA on the
other hand are systems having a regular space and universal laws. They provide models of biological
processes in so far as these involve pattern formation, but are principally models in physics on the

basis of self-organisation within their spatial pattern.

* The "memory" of a genomic regulatory network is its cell type or gene expression pattern (see chapter 5.11).
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Figure 1.1. An example of John Conway's |
"game-of-life" on a 100x100 grid with toroidal
boundary conditions. The initial state is this
n
pattern ""g
grid.
Right: The space time pattern shown as an
isometric projection (looking up at a transparent
box). About 300 time-steps are shown.
Diagonal features are gliders.
Top left: A 2d snapshot..

at the centre of an otherwise empty

"Life" is a 2d binary CA. A cell updates
according to the values of itself and its nearest

neighbours relative to a 3x3 block

The "life" rule is as follows, where a black-cell
is alive, and a white-cell is dead:

Birth: A dead cell comes to life if its
neighbourhood had exactly three live cells.
Death by overcrowding: A live cell dies if its
neighbourhood has 4 or more live cells apart
from itself.

Death by exposure: A live cell dies if its
neighbourhood has less than 2 live cells apart
from itself. '




Figure 1.2.. An example of 1d, =5 CA rule with complex dynamics. The neighbourhood size #=5,
the hex rule number”® is 36 0a 96 9.
Left. the space-time pattern from a random initial state, system size n=200 with periodic boundary
conditions, 480 time-steps. Gliders (and a glider-gun) emerge against a checkerboard background
after an initial sorting out phase.
Top right. The basin of attraction field for the same rule, »=16. The 216 states in state space are
organised into 17 basins of attraction, only the 11 non-equivalent basins are shown.

The number of states in each basin, the number that are garden-of-Eden states (g-of-E), the
attractor period, and the number of each type, is as follows (from left to right),

States g-of-E period types
30928 14536 8 1
6 4 2 1
220 108 16 4
23808 11584 16 1
1136 528 16 2
1972 892 8 2
2064 992 16 1
568 232 16 1
448 224 16 2
144 64 32 1
26 20 1 1

Note the symmetries due to equivalent transient trees.
Bottom right. A detail of typical glider interactions.

* The rule numbering conventions are described in chapter 4.2.



1.5. Emergence in Cellular Automata °

Complex emergent behaviour in CA becomes apparent in the evolving space-time pattern, where
self-sustaining configurations, particles or gliders, may emerge and interact. The system's behaviour
can then in principle be described, and predictions made, at the higher level of gliders and their
collision rules rather than at the lowest level of the CA's rule and neighbourhood geometry. Figures
1.1 and 1.2 show examples for 2d and 1d CA. These gliders are discrete analogues of Prigogine's
dissipative structures (Prigogine and Stengers 1984), patterns in forced chemical reactions far from
equilibrium as in the well known Belousov-Zhabotinski reaction, but a term now applied to non-
linear effects producing emergent structures in any far from equilibrium continuous system, such as
eddies in fluid flow or Bénard cells. Many of these phenomena are modelled by CA (Toffoli and
Margolus 1987, Adamatzki 1994). However, in CA the process of formation, persisténce and
interaction of gliders and other dissipative structures can be traced at the lowest level of the system's
basic components and their local interactions which are completely defined. This ability to see two
levels of behaviour simultaneously, the underlying and emergent level, may lead to insights into the
mechanics of self-organisation.

CA rules can be classified as ordered, complex and chaotic (Wolfram 1983). A'I'he small
proportion of complex rules that support gliders are said to occur at a phase transition (Li et al
1990) in rule space, the so called "edge of chaos" (Langton 1990). Complex CA motivated the field
of Artificial Life (Langton 1986,1989, Langton ef al. 1991), and the long transients and glider
dynamics typical of these rules provide metaphors for the emergence of life from the stuff of
inanimate physics.

1.6. Cellular Automata Local and Global Measures

A method is described in chapter 4 for classifying CA rules by a measure of the variance of input-
entropy over time. The frequency with which different neighbourhoods are looked up in the rule
table (the frequency of blocks of size £, the neighbourhood size) is taken for a sample of trajectories
over a moving window of time-steps. Low mean entropy of the ﬁequency.disu-ibution indicates
order, high mean entropy indicates chaos. In both cases the variance of the entropy over time is low.
High variance is then a signature of large scale coherent pattern formation, typically made up of
gliders interacting within periodic background domains, where the gliders act as domain boundaries.
The method has allowed glider rules and related complex rules to be found automatically. A random
sample of thousands of such rules sorted according to these measures have been assembled, though
the source is virtually limitless. Glider dynamics in CA is of prime interest as an example of self-
organisation and emergence in simple systems, where all aspects of the system can be fully defined.



The space of rules are sorted according to these local measures, and the measures are compared
with global measures on the structure or topology of attractor basins and subtrees. It is shown that
these global measures correlate with the local entropy measures, and also with the quality of
dynamics as seen subjectively. A key measure of topology appears to be the characteristic in-degree,
or bushiness, of subtrees in attractor basins. Ordered dynamics turns out to have relatively high in-
degree with very short, bushy transient trees, rooted on very short attractor cycles. Chaos, on the
other hand, is characterised by very long, sparsely branching transient trees rooted on very long
attractor cycles. Measures of the bushiness of subtress in attractor basins are captured by the density
of states having no predecessors known as "garden-of-Eden" states, and more generally by the
frequency distribution of in-degrees. In preliminary results, a histogram of the in-degree distribution

‘shows contrasting profiles for order and chaos; for complex rules the distribution seems to follow a
power law. These measures are taken on the whole basin of attraction field for small systems and
Just on sample sub-trees for large systems. ’

1.7.  Cellular Automata parameters

Various rule parameters have been proposed that seek to predict CA behaviour based only on the
structure of the lookup table (described in chapter 4.2), for example Langton's A parameter which for
binary CA is the fraction of 1s in the lookup table*® (Langton 1990), the equivalent idea of internal
homogeneity introduced earlier by Walker (1966), the author's Z parameter (Wuensche and Lesser
1992a, Wuensche 1994a) depending on the distribution of 1s and Os in the lookup table (described
in chapter 4.12), and more recent parameters proposed by Zwick (1995). Parameters of this sort are
interesting because they can be used in principle to tune a CA by selective bit flips. though the
order/chaos phase transition and provide another measure which may be correlated with measures on
local and global dynamics. As yet the predictive powers of these parameters are only approximate to
varying degrees. For binary 1d CA the Z parameter tracks behaviour more closely than A. It derives
from the algorithm for generating pre-images and gives an expectation of the bushiness of subtrees
and thus of the convergence of trajectories, a sort of inverse Liaponov exponent. Plots of Z against
garden-of-Eden density for a large sample of rules show a marked correlation (Wuensche 1994a).

1.8.  Emergence in Random Boolean Networks

In RBN the emergence of coherent spatial patterns like those in CA is unlikely or impossible

because of the irregular connectivity and non-local rules. As illustrated in figure 5.6, it can be shown

* The 2 parameter applies to CA with any value range including binary. If some arbitrary value (usualy 0) is
designated as quiescent, then A is defined as the fraction of non-quiescent values in the lookup table.



that a system of interacting gliders is gradually degraded when regular CA connections are
progressively randomised (Wuensche 1993a). What, then, are the emergent properties in a random
Boolean network. ‘

I will ‘argue that there is an emergent property fundamental in biology and other complex
systems. This property is memory, a network's ability to dynamically categorise its state-space. The
emergent structure that embodies memory is the network's basin of attraction field, representing all
possible trajectories through state-space. As will be shown, categorisation occurs far from
equilibrium as well as at attractors, creating a complex hierarchy of content addressable memory
represented by separate attractors within the basin of attraction field, and also by the roots of
subtrees within basins of attraction.

It can be argued that in biological networks such as neural networks in the brain or networks of
genes regulating the differentiation and adaptive behaviour of cells, the topology of attractor basins
and subtrees, the network's memory, must be Jjust right for effective categorisation. The dynamics
needs to be sufficiently versatile for adaptive behaviour but short of chaofic to ensure reliable
behaviour, and this in turn implies a balance between order and chaos in the network.

In RBN as applied to gene regulatory networks (Kauffman 1969, Somogyi and Sniegoski
1996), the notion of a phase transition between order and chaos is just this balance. Tuning various
parameters in the network's wiring/rule setup, in particular the degree of "canalisation" at the level of
rules (Kauffman 1984, Harris ez al. 1996) moves behaviour across the transition.

Work in collaboration with Stuart Kauffian and Steve Harris (Harris e/ al. 1996) and with
Roland Somogyi (Somogyi and Sniegoski 1996, Somogyi et al. 1996) applies RBN as models of
parallel processing genomic regulatory networks and develops Kauffman's long established ideas in
this area (Kauffman 1969,1984). Particular settings of network parameters allow the dynamics to
settle into a set of stable active (also inactive and dynamic) gene expression patterns which represent
the various cell types, or cell pathology such as cancer. These are interpreted as the set of attractors
(or basins) in the basin of attraction field of the genomic network, or as "frozen skeletons",
trajectories outside the attractor cycle itself but where the pattern of active genes has largely
stabilised.

1.9. Random Boolean Networks Local and Global measures

Various order/chaos measures can characterise RBN dynamics and identify the phase transition
(Kauffman 1969). The Derrida plot (Derida and Stauffer 1986) is analogous to the Liaponov
exponent in continuous dynamics and measures the divergence of trajectories based on Hamming
distance. Further measures are available such as the frequency of sizes of damage spread resulting a



single bit perturbation of the network state, the percolation of "frozen" i.e. unchanging regions,
input-entropy of single genes taken on the frequency of input patterns over time. Measures on the
topology of attractor basins and subtrees such as their in-degree distribution can be made as for CA.
The precise structure of attractor basins is also of interest as it reflects the stability of cell types to
perturbation and allows methods of extracting genetic networks architecture from biological data
(Somogyi et al 1996), an application of the inverse problem (see below). For larger RBN, methods
are available for extracting data on transient/frozen skeleton/attractor characteristics such as the
number and size of different attractor basins or skeleton sub-trees, the length of attractor cycles and
of attractor/skeleton transients.

1.10. Random Boolean Network Parameters

Various network parameter settings may be tuned to move RBN dynamics across the order/chaos
phase transition as defined by these measures. The P parameter (described in chapter 5.11.10) is
equivalent to the 4 parameter in CA. Another parameter which seems to be closer to observed cell
biology is the degree of "canalisation” at the level of rules, though the characteristics of network
connections also play an important role. Canalisation occurs when a particular input (0 or 1) on a
connection determines a gene's behaviour irrespective of its other inputs. That connection is then
said to be canalising. The canalisation setting on RBN corresponding to the phase transition is very
far from random expectation. The sparse data that is just beginning to assembled by Steve Harris
(Harris ef al. 1996) on real genomic regulatory networks seems to correspond to these settings,
indicating that genomic regulatory networks in biological systems evolve to remain delicately posed
close to the phase transition.

1.11. Learning and the inverse problem

Both Random networks and CA reliably categorise states within transient subtrees as well as at
attractors (Wuensche 1993a, 1994b). However, RBN have a vastly greater parameter space than CA
so that their potential for emergent memory is vastly more flexible. Interactions within a system of
many interconnected networks, a network of networks, may lead to yet higher levels of emergence.

A network's basin of attraction field provides an overall picture of its hierarchical categorisation
of state-space. Learning algorithms to modify or sculpt the resulting basin of attraction field were
presented in (Wuensche 1993b). Alternative methods for solving the inverse problem, finding the
RBN architecture that will satisfy a complete or partial set of predetermined transitions, have
recently been formulated independently by Manor Askenazi (1996) and John Myers (1996).

10



Chapter 2
Basins of Attraction

2.1. Introduction

In Ross Ashby's "An Introduction to Cybernetics" (Ashby 1956), he defines determinate machines or
dynamical systems as corresponding to a closed, single valued, transformation. The dynamics can be
represented as a "kinematic graph". The separate regions of the kinematic graph are the graph's
basins of attraction.

Attractor basins of discrete dynamical networks have been mysterious objects hidden from view
because they were seemingly computationally intractable (Wolfram 1986); however, methods to
compute and reconstruct these objects have been invented by the author, making them readily
accessible by computer generated graphics (Wuensche and Lesser 1992a, Wuensche 1992b-1996).
Basins of attraction are possibly a key to understanding emergent behaviour in both CA and RBN.

A global perspective on a continuous dynamical system is provided by its vector field - the
field of flow imposed on phase-space by a differential equation. This concept can be traced back to
Lord Rayleigh amongst others and was developed by Henri Poincaré, founder of dynamical systems
theory. The vector field is described by its phase portrait A set of attractors, be they fixed point,
limit cycles or chaotic, attract various regions of phase space. The phase portrait represents the basin
of attraction field. Analogous concepts apply to discrete systems, but as there are no continuous co-
ordinates of motion®, thus no continuous flow or vector field, a very different kind of phase portrait
is required, a graph linking state transitions.

CA and RBN are both examples of discrete deterministic dynamical networks made up from
many simple components acting in parallel. The dynamics is driven by the iteration of a constant
global updating procedure (the transition function) resulting in a succession of global states, the
network's frajectory. Given a noise free, deterministic transition function within an autonomous
system (cut off from outside influence), any pattern of activation (the global state) imposed on the
network will seed a determined trajectory, though it may be unpredictable (Wolfram 1983,1984a).
In fact the system may be regarded as semi-autonomous, in the sense that a global initial state must
be imposed or perturbed from outside to set the system going along a new trajectory. To be of
interest, the system also needs a channel to communicate its internal state to the outside.

* Continuity in terms of Hamming distance may be provided by representing trajectories on the edges of an
n-dimensional hypercube where 7 is the size of the network (e.g. Lewis and Glass 1992), however this presents
difficulties of visualisation for n>3.
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In discrete dynamical networks, a global state (or image) of the network may have any number
(including zero) of immediate predecessors (called pre-images) converging onto it. Trajectories can
therefore merge outside the attractor. In continuous systems they can only come arbitrarily close. In
a finite network of size » and value range v there are v global states, thus 2” in binary networks.
Any path must inevitably encounter a repeat. When this occurs the system is locked into a state cycle
(the attractor). Many merging trajectories typically exist leading to the same attractor. The set of all
such trajectories, including the attractor itself, make up a basin of attraction, whose topology is
typically branching transient trees rooted on the attractor cycle, though this "cycle” may be a stable
point, an attractor cycle with a period of one.

Separate basins of attraction typically exist within state space. A transition function will, in a
sense, crystallise state-space into a set of basins, the basin of attraction field. The field may be
represented as a directed graph showing the state at each node. As such it is an exact representation
of the network's entire repertoire of behaviour, showing all possible trajectories .

Attractor basins are mathematical objects in space-time that link the system's global states
according to their dynamical tramsitions. Access to these objects opens up a new area of
phenomenology, a global perspective on the dynamics of discrete networks, in addition to the study
of space-time patterns alone. The relative length and "bushiness” of trees, and other features of
attractor basin topology, reflect space-time phenomena.

Figure 2.1. summarises the concepts. Figures 2.2-2.5 provide an example, showing the basin of
attraction field and individual basins of Conway's "game-of-life" on a 4x4 (toroidal) grid, thus a
state space of 216. Figure 2.2 shows the entire basin of attraction field comprising 345 basins. Figure
2.3 shows only the 34 non equivalent basins (see chapter 1.4) with one attractor state draw as a 4x4
pattern. Figure 2.4 shows two basins in detail where all the nodes are drawn as 4x4 patterns. See also
figure 1.1 for a description of "life".

2.2.  Computing Pre-images

The capability of constructing attractor basins depends on reverse algorithms invented by the author
for directly computing the pre-images of network states. This allows the network's dynamics in
effect to be run backwards in time; backward trajectories will, as a rule, diverge. These algorithms
open up a window on the precise structure of the basins of attraction of discrete dynamical systems.

Different reverse algorithms apply to networks with different qualities of conmectivity. The
most computationally efficient algorithm applies to 1d networks where each site has the same
connection template to a local neighbourhood. This algorithm thus applies to 1d CA or variants of
1d CA where the rules may be different at each site. An alternative algorithm is required for

12



For a network size n «— n —>
an example of one of its states, B= 1010........ 0110
State-space is made up of all 2” states, )

the space of all possible bitstrings or patterns..

Part of a particular trajectory in state-space,
where C is a successor of B, and A is a predecessor (pre-image)
of B, according to the dynamics of the network.

.

The state B may have other pre-images besides 4, and
the pre-image states may have their own pre-images or none.
States without pre-images are known as garden-of-Eden states

. Any trajectory must sooner or later encounter a state that

- occurred previously - it has entered an artractor cycle.
: The trajectory leading to the attractor is known as a transient.

The period of the attractor is the number of states in its cycle,

é which may be only one - this is known as a point attractor.

Ao zal

Take a state on the attractor, find its pre-images (excluding
the pre-image on the attractor). Now find the pre-images of each
pre-image, and so on, until all garden-of-Eden states are reached.

The graph of linked states is a transient tree rooted on the attractor
state. Part of the transient tree is a subtree defined by its root.

Q o }" Construct each transient tree (if any) from each attractor state
& The complete graph is the basin of attraction. Some basins of

o attraction have no transient trees at all, just the attractor, a seeming

O D inconsistency in terminology but so be it.

Now find every attractor cycle in state-space and construct its

basin of attraction. This is the basin of attraction field containing
all 2" states in state space, but now linked according to the
dynamics of the network. Each discrete dynamical network imposes
a particular basin of attraction field on state-space.

Figure 2.1. State space and attractor basins.
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networks with a non-local, arbitrary pattern of connections such as RBN, including RBN with mixed
connectivity k. The non-local algorithm also applies to CA including 2d CA or CA of any
dimensionality because these are just a sub-class of RBN.

These methods are in general orders magnitude faster than the brute force method, constructing
an exhaustive map resulting from network dynamics. The exhaustive method rapidly becomes
computationally intractable with increasing network size so is limited to small systems, but applies
to all network types and also allows the attractor basins of random maps to be constructed as
described in chapter 3. These three independent methods together form a valuable reality check on
the correctness of the computed pre-images and attractor basins.

The reverse algorithm for 1d CA was introduced in the author's book (Wuensche and Lesser
1992a). The reverse algorithm for RBN was introduced in (Wuensche 1992b-1993b). The
algorithms are described in chapters 4 and 5. These methods are applied in Discrete Dynamics Lab
(DDLab), interactive graphics software available on the Internet (Wuensche 1996). A overview of
DDLab is given in appendix 6.

Prior to the introduction of these reverse algorithms, there were very few examples of attractor
basins to allow a study for their overall topology and structure. The few examples that were
available were for small 1d CA or the exceptional cases of CA rules amenable to algebraic analysis
(Wolfram and Peck 1986, Pitsianis e al. 1989, Martin e al. 1984). In the case of random Boolean
networks there were no examples at all.

Previous investigations of attractor basin structure has been done by statistical methods (for
example Wolfram 1984a,1985, Gutowitz 1991, Walker and Ashby 1996, Walker 1971-1987,
Kauffman 1969-1993). In these methods, also now implemented in DDLab, many forward
trajectories are run from random initial states looking for a repeat in the network pattern to
identifying the range of attractor types reached. The frequency of reaching a given attractor type
indicates the relative size of the basin of attraction, and other data are extracted such as the number
of basins, and the length of transients and attractor cycles.

2.3. Constructing Attractor Basins
Methods for constructing subtrees, single basins and the basin of attraction field as implemented in
DDLab are described below.

To construct a basin of attraction containing a particular state or "seed", the network is iterated
forward from the seed state until a repeat is encountered in the trajectory. The number of steps to
achieve this is known as the disclosure length, the transient plus the attractor period (Walker and
Aadryan 1971). This identifies the attractor cycle as the sequence of states from the state that was
repeated. :

14
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Figure 2.2. The entire basin of attraction field of the "game-of-life" on a 4x4 grid comprising 345
basins. (overlaps between basins result from the graphics layout and should be ignored).

Figure 2.3. The basin of attraction field of the "game-of-life" on a 4x4 grid showing only the 34
non equivalent basins (see chapter 1.4). One attractor state in each basin is drawn as a 4x4 pattern.
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eqiy basina=16Lengih=16 aifhex)=40 4a
period=1 aize=348"g=216 gd=0.621 mi=8,mp=39
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Figure 2.4.
Two basins of attraction of the "game-of-life" on a 4x4 grid shown in greater detail with all the
nodes drawn as 4x4 patterns (with inevitable overlaps). Both basins have attractor period one.
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Once the attractor cycle is known (and drawn as a circle of nodes), the transient tree (if it exists)
rooted on each attractor state is constructed in turn. Using one of the reverse algorithms, the pre-
images of the attractor state are computed (and draw as the -pre-image fan), but the pre-image lying
on the attractor cycle itself is deliberately excluded to prevent endlessly tracing pre-images
"backwards" around the attractor cycle. The reverse algorithm is then re-applied repeatedly, to the
pre-images of pre-images, until all the garden-of-Eden states have been reached. These are the leaves
of the transient tree having no pre-images. In this way the transient tree is completely specified (and
simultaneously drawn).

In a similar way just a subtree or a fragment of a subtree may be constructed rooted on a seed
state. However, because a seed chosen at random is very likely to be a garden-of-Eden state, to
construct a subtree it is usually necessary to run the network forward by at least one step from the
random state and use the state reached as the subtree seed. Running forward by more steps will reach
a seed deeper in the subtree so allow a larger subtree to be constructed, though running too far
forward may reach the attractor, in which case the subtree procedure will reconstruct the entire basin.

For CA the construction of transient trees and subtrees is simplified by taking advantage of shift
invariance as described in chapter 1.4. There are global states that differ only by a rotation of the
circular array. Such rotation equivalent states must have equivalent pre-images, rotated by the same
amount, and must occupy equivalent positions in the same or an equivalent basin. If the pre-images
of a given state have been computed, the pre-images of its rotation equivalents are known, and by
extension so is the entire transient tree or subtree, which need not be re-computed. If rotation
equivalent states belong to separate basins, the basins will be equivalent, so only one example needs
be constructed.

Constructing the entire basin of attraction field requires setting up a tick-off table, an array with
27 bits where each bit represents a state in state space. The first basin of attraction making up the
field is seeded with the state represented by the first bit in the array, say all 0s. As the basin is
constructed all states belonging to it (and also to rotation equivalents in the case of CA) are ticked
off in the tick-off table. When the basin is complete, the next available state, that has not been ticked
off, is used as the seed for the next basin, and the procedure is repeated until no available states
remain in the tick-off table. This method avoids basins being duplicated.

24 Portraying Attractor Basins

Attractor basins are portrayed as computer diagrams in the same graphic format as presented in
(Wuensche and Lesser 1996). Global states are represented by nodes, by a bitstring pattern in 1d or
2d, or as the decimal or hex value of the state. The nodes are linked by directed arcs. Each node will

have zero or more incoming arcs from its pre-image nodes, but because the system is deterministic,
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exactly one outgoing arc (one out-degree). Nodes with no pre-images have no incoming arcs, and
represent garden-of-Eden states. The number of incoming arcs to a node is its in-degree.

Figure 5.1 shows a typical basin of attraction of a random Boolean network (it is part of the
basin of attraction field shown in figure 5.2). Figure 4.16 shows the basin of attraction field of a CA.
Many symmetries are evident, a major difference between the topologies of the two systems.

In the graphic® convention for drawing attractor basins (described in detail in Wuensche and
Lesser 1992), the length of transition arcs decreases with distance away from the attractor, and the
diameter of the attractor cycle asymptotically approaches an upper limit with increasing period. The
forward direction of transitions is inward from garden-of-Eden states to the attractor, which is the
only closed loop in the basin, and then clockwise around the attractor cycle.

Typically, the vast majority of states in a basin of attraction lie on transient trees outside the
attractor cycle, and the vast majority of these states are garden-of-Eden states. A transient tree is the

“set of all paths from garden-of-Eden states leading to a particular state on the attractor cycle. A
transient sub-tree is the set of all paths from garden-of-Eden states leading to a state within a
transient tree.

* The graphic convention has been devised to give as clear an impression of attractor basins as possible, but it
should be remembered that the essential information is how states are connected, not the particular appearance
of the basin images. '
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Chapter 3

Attractor Basins of Random Maps

3.1. Introduction.

Discrete Dynamical Networks, and in particular their attractor basins, can be put into the wider
context of random graph theory. This branch of mathematics combines graph and probability theory
to predict the structures that arise when vertices are randdmly linked by directed or undirected edges,
usually applying some constraints to the edge architecture. For example, graph theory has been
applied to identify neutral folding networks in idealised RNA or protein sequences space
(Reidys 1996).

The structures that arise in a random graph are precisely defined in the terminology of random
graph theory. To give just the flavour they include the key notions; path - a sequence of vertices
linked by directed edges, a cycle is a closed path, a connected graph or subgraph - with any two
vertices ‘connected by a path, a tree - a connected graph without cycles, and components - the
maximal connected subsets of vertices. Clearly these ideas directly relate to the attractor basins of
discrete dynamical network made up of trajectories, subtrees, and attractor cycles. Random graph
theory, and in particular "random mappings" where the out degree from each vertex is exactly one,
could provide a powerful mathematical framework for the global dynamics of discrete networks.

Using DDLab the structures found in random maps” can be computed numerically and
portrayed just as the attractor basins of CA or RBN. In work in progress in collaboration with
Christian Reidys (Reidys and Wuensche 1997), Reidys has used random graph theory to formulate
expressions for the expectation of cycles of various lengths in random maps, including random maps
with biases based on Hamming distance. These are compared with the basin of attraction fields of
example mappings with the same biases generated by DDLab. Some results of this work in progress
is presented below.

A discrete dynamical network is equivalent to a mapping with particular biases imposed by the
transition function. A long term aim is to apply random graph theory to formulate expressions for
the expectation of the various features of the basin of attraction fields of discrete dynamical
networks. This especially applies to RBN where the mapping biases should be more mathematically
tractable than in the case of CA. :

* A random map is equivalent to a RBN where k=n (neighbourhood = network size). The "random map model”
has recieved considerable attention in the literature (e.g. Kauffman 1996,1971,1993, Wolfram 1983, 1884a,
Gelfant and Walker 1984, Coste and Henon 1986, Derrida and Flyberg 1987, Derrida and Bessis 1988).
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3.2. Random Graphs.

A random graph is constructed by taking a set of » vertices linked randomly by k edges. What then is
the expectation of sizes and internal structure of separate connected components of the graph? Put
another way, randomly connect 7 buttons with & threads and lift out any button. Other buttons that
happen to be threaded directly or indirectly to that button will also lift out as a separate component
with a structure consisting of loops and trailing ends. Graph theory combined with probability theory
provides tools for calculating the expectation and distribution of the various general characteristics
that describe the graph.

A classical result in random graph theory is the emergence of a giant component (Erdos and
Renyi 1960). When  is small compared with » there will be many small separate components, but
as more edges are added to the graph, at the threshold value of #=n, a giant component suddenly
arises linking together almost all vertices. This is a phase transition related to the number of edges £,
reminiscent of phase transitions between order and chaos in discrete dynamical networks.

3.3. Random Maps.

A special case of random graphs are random directed graphs with out-degree one, also known as
random maps, where edges have a direction and each vertex has exactly one outgoing edge but an
arbitrary number of incoming edges (including zero).

The structures found in random maps correspond to the topology found in the attractor basins
of discrete dynamical networks, where each separate component of the graph is made up of trees
rooted on just one closed structure or cycle. Note that the term topology is used here to describe the
conformation of graphs or attractor basins, how vertices are linked by edges, independent of the
appearance of the graphs drawn according to some graphic convention, and should not be confused
with the standard use of the term topology in mathematics.

To construct a mapping of the Boolean hypercube of sequences of length », (i.e. for a set Qg of
size 2" comprising all binary strings of length n), a mapping from Q5 -0}, to each element V; of
the set O, independently assign one successor (or image) Vx also belonging to Qf, chosen at

random (or with some bias). The mapping is represented below as 2" pairs of elemenrs (states in
network terminology), where each image Vs represents a possibly different member of the set 0.

V:z n_y VZ"— ) Vi B N Y all elements of the set O
J $ \3 NN successors, image elements
Ve Va i Veeook. Vo Vi Vi chosen at random (or with some bias)
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The list of image elements is likely to contain repeats, and if so some other elements of O}
must be missing from the image list. Transitions to some arbitrary element V, may thus be one—one
or many—»one, or may not exist. The latter is a garden-of-Eden state in the temﬁnology of discrete
dynamical networks. A representation of the particular mapping may be drawn as a basin of

attraction field or fragment thereof just as for CA or RBN, and will have the same general topology
of trees rooted on attractor cycles.

We will consider the probability spaces of mappings of the Boolean hypercube with 2" vertices

2
105 — O} with various measures or biases. The number of all possible mappings is (2”) , S0 an

unbiased or uniform measure on each mapping is u(f) = l/(Z" )(2 ) . Here all mappings are equally

probable. Several classical results (Bollobas 1985) on this probability space are,

7\ an
P(G 7 IS connected ) ~ 3 X (2”) probability of one big basin of attraction

E( number of cycles ) ~ log(Z”) ' expectation of the number of basins of attraction

n —-r :
E ( cycles of length r ) =~ (2 ) X (r - 1)! x(Z”) expectation of the average number of cvcles of length
r

We will now introduce a Hamming distance bias on the mapping so that a state J; maps only to

the set of states at a Hamming distance of d from itself (described as the surface of a ball with radius
d), with uniform probability. Mappings f:0} — 07 now have the constraint d,,(v, f (v)) =d, where

d,, is the Hamming distance. The number of different mappings is now,

B,

(2") ) ) ) . n n n!
where B, is the ball in Q) with radius d and |Bd|= d where dl= (n —d)ixd!

Following some further reasoning (Reidys and Wuensche 1997) it turns out that an upper and lower
bound can be derived for the expectation £ (Cr) of the number of cycles of length L in a system of

size n with Hamming bias d, as follows,

Lower Bounds Upper Bounds
for L even for L odd

L/2 L-1)2
e ” RN2Y)
1 d 1 d
— —— OF —| ——dee

A

=

<
A

1 LA
- equation 3.3.1
Li(n

21



The variance of E(Cy )can also be computed (Reidys and Wuensche 1997). It turns out that the

smallest variance, thus best prediction, is for short cycles in large systems. For low Hamming
distance bias d the lower bound is most signiﬁcaht. Further results predict that random mappings
without bias typically produce large cycles whereas random mapping where the pre-image and
image are separated by a small Hamming distance typically produce short cycles.

3.4. Basins of Attraction of Random Maps.

We can now test the expression for the expectation £ (CL) of the number of cycles of length L, by
inserting parameter values in equation 3.3.1. These results can be com;éred with the basin of
attraction fields of examples of mappings with the same pm&m computed numerically.

A random map can be defined with the same Hamming biases as discussed above using
DDLab, and the directed graph comresponding to the mapping, its basin of attraction field (or single
basin or subtree), can be computed and drawn. The pre-images of an elemeht (or state) V;, are found
by scanning the mapping list of image elements, and noting the pre-image for every occurrence of
Ve. If V does not appear in the list it is a garden-of-Eden state. The DDLab source code of the
function that implements this algorithm is shown in appendix 6.1.

In the following examples, results from random graph theory (RGT), and by numerical
simulation using DDLab, are compared. Samples of random maps are set up in DDLab with
Hamming distance d of 1, 2 and 3. The length of the binary string n=12, giving a state space
(number of vertices of the Boolean hypercube) of 212=4096). DDLab generates the basin of
attraction field for each map (figure 3.1 gives examples), and the frequencies of cycle lengths are
counted. This is compared with the upper and lower bounds of the expectation E (CL) of the number
of small cycles of length L given by equation 3.3.1. Although this is a preliminary survey based on
small sample sizes, the random graph theory seems to correctly predict the cycle length frequency.
Comparative tables are given below.

Comparing analytical £ and numerical (DDLab) cycle length frequencies for n=12
L E(lower-upper) DDLab (sample size 20) note: for odd d only even

22

average range cycles are possible

a=1 (8 170.6 170.6 172.4 160-191

Cy 7.1 218 7.1 5-10

Ce 039 589 1.0 0-3
a=2 Cr 310 320 298 25-43

C3 031 207 6.7 3-13

Cy 023 155 28 0-5
a=3 Cy 9.3 9.3 9.8 4-16 -

Cy 002 4.6 1.25 0-3



Hamming bias 3.

Figure 3.1. Examples of typical basin of attraction fields of the random maps with Hamming bias 1,
2 and 3. The length of the binary string, #=12 (i.e. 2!2=4096 vertices). ‘As the Hamming bias is
relaxed more vertices are locked into transient trees and larger cycles
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Flgure 3.2. Example of a typical basin of attraction field of a random map with no bias for a binary
string of length #=12 (i.e. 212=4096 vertices).

3.5. RBN and CA in the context of Random Maps.

Examples of typical basin of attraction fields of the random maps with Hamming bias 1, 2 and 3
taken from the samples are shown in figures 3.1. As the Hamming bias increases, i.e. the Hamming
constraints are relaxed, more vertices are locked into transient trees and larger cycles. An example
- without bias is shown in figure 3.2.

Random maps can be considered as the most general context for a discrete dynamical system
and are equivalent to a fully connected RBN where k=n, (the neighbourhood = the network size).
This follows becaunse each cell in the RBN, with its own exhaustive lookup table, can be assigned an
arbitrary output for each network pattern.

RBN are usually applied as sparsely connected models where k<<n, as in genomic regulatory
networks or neural network models. Sparsely connected RBN may be regarded as a subclass of
random maps just as CA are a subclass of RBN. The progression of subclasses is as follows,

'CA c RBN < Random Maps

3.6. The Random Map Reverse Algorithm as applied to CA and RBN.

The "brute force” reverse algorithm for finding the pre-images of states in random maps can also be

applied to discrete dynamical networks, CA and RBN, and is available in DDLab. The method
depends on first constructing an exhaustive mapping 05 —>Q as described in section 3.3 above. For

discrete dynamical networks, the mapping is defined by iterating the network forward by one step
from every state in state-space and filling in the image list accordingly. A list of 2” pairs, each state
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and its image (successor), is created and held in a data structure. Once defined, the
pre-images of an arbitrary state S are found by scanning the image list; any occurrence of S in the list
gives a pre-image, the state paired with S. If S does not occur in the list it has no pre-images, a
garden-of-Eden state. The C code function for the random map algorithm in DDLab is given in
Appendix 6.1. The attractor basins are computed and drawn as described in chapter 2. This
exhaustive method is restricted to small systems because the size of the mapping list grows
exponentially with system size, and scanning the list for pre-images is slow compared to the direct
reverse algorithms for CA and RBN, described in chapters 5 and 6.

3.7 Conclusion. -

The results for cycle length frequencies predicted by the analytical methods described are tentatively
confirmed by numerical simulations using DDLab. These preliminary results indicate that the
structures in random maps, with biases based on Hamming distance, may be predicted by analytical
methods. A random Boolean network is another type of bias on a mapping, though admittedly far
more complex. In formulating expressions for expectations for particular structures in random maps
with such complex biases, the interplay of theory and experiment will play an important role.
Refining analytical methods by checking against numerical simulations has already proved useful in

the preliminary work described here. Random graph theory may provide a powerful mathematical
framework for discrete dynamical systems.
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Chapter 4

Self-Organisation in One-D Cellular Automata*

4.1. Introduction

Conway's well known "game of life" is a two-dimensional cellular automata (CA) that supports
coherent, periodic, space-time configurations that propagate and interact on a quiescent background
(Conway 1982). An example of a space-time pattern of the game-of-life is shown in figure 1.1. The
menagerie of configurations found have been grouped under various names such as gliders, glider-
guns, eaters, blinkers etc. Interactions between glider streams can be contrived to create a system
capable of universal computation (Conway 1982). Langton (1986) suggests that such virtual state
machines may provide the "molecular” logic for artificial life embedded in CA.

In some 1d CA, analogous phenomena exist within a background that may be quiescent but is
often periodic. These coherent structures are described variously as solitary waves, gliders, virtual
automata, information structures, particle-like structures and domain boundaries or defects; for
simplicity they are refered to here as gliders. The emergence of gliders would in principle allow the
system to be described and predictions made at a higher level, on the basis of observed glider
collision rules without reference to the underlying low level CA rules. Gliders may eject or absorb a
regular glider stream, or spontaneously combine to form compound gliders, which then interact at
yet higher levels of description. The process could unfold without Limit in large enough systems.
Glider dynamics in CA provide a stark instance of self-organisation in a simple system resulting '
from many local small scale parallel processes. This illustrates the concept of emergence, and one
approach to the elusive notion of complexity.

Glider dynamics can be approached from a number of perspectives. It corresponds to
Wolfram's class 4 behaviour (Wolfram 1984a), to notions of emergent computation at the edge of
chaos, and to a phase transition between order and chaos (Langton 1990). Gliders are analogous to
autocatalytic sets of polymers in the sense of Kauffman (1993), in that a configuration C sets off a
sequence of transformations, -C,—>C3—>--- —C), with catalytic closure. Members of such sets
have a survival advantage in occupying space, and the set acquires its own identity as an observed
object at a higher level. Gliders are also discrete examples of Prigogine's far-from-equilibrium
dissipative structures (Prigogine 1984). However, in CA the process of formation, persistence and

* This chapter is partly based on (Wuensche 1994a) and also on work in progress.
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interaction of gliders and other dissipative structures can be traced at the lowest level of the system's
basic components and their local interactions which are completely defined. This ability to see two
levels of behaviour simultaneously, the underlying and emergent, may lead to insights into the
mechanics of self-organisation (e.g. Hanson and Cruchfield 1995).

To illustrate a spectrum of CA behaviour, figure 4.1 shows typical space-time patterns of a
family of 5-neighbour rules ranging progressively through ordered, complex and chaotic dynamics,
corresponding to Wolfram's (1984a) classes (7 and 2) - (4) - (3). Starting with the glider rule in
figure 4.1(d), the other rules were evolved by mutating the rule table to progressively force the Z
parameter higher (towards chaos) and lower (towards order). Langton illustrated a similar sequence
on the basis of the 4 parameter® (Langton 1990). Z is a trajectory convergence parameter which
predicts the bushiness of sub-trees in attractor basins (Wuensche 1992a,1994a), described in section
4.12. Z seems to approximately conform to a subjective view of behaviour, or behaviour as
characterised by entropy variance, especially when tuned through its range of values by small
mutations of a given rule table.

How simple can a CA be and yet support "interesting” glider behaviour, and what is this
quality? How and why is such behaviour able to emerge? What quantitative measures can be used to
identify glider dynamics? To answer these questions it may be helpful to examine a relatively large
sample of CA rules that appear to us to support glider-like properties, but whose architecture is as
simple as possible. In 1d binary CA, a number of glider rules have been identified. Among the 256
binary 3-neighbour rules, the "elementary rules” (Wolfram 1983), an exhaustive search reveals two
sets of glider rules, rule 54 and 110, and their equivalents. Their glider interactions have been the
subject of particular study (e.g. Li and Nordahl 1992, Boccara et al. 1991, Hanson and Cruchfield
1995). Some examples of glider rules in 5-neighbour rule-space have been documented (e.g.
Wolfram 1984a, Li 1989, Aizawa et al. 1990, Wuensche 1992a,1994a). Other examples are derived
from 1d CA with more complicated architecture, such as a cell value range greater than binary (e.g.
Langton 1990, Wolfram 1984a, Lindgren and Nordahl 1990).

Complex rules that feature gliders are supposed to be rare (Wolfram 1985). Most rules are
either ordered or chaotic, though ordered rules become increasingly rare for larger neighbourhood
size. Complex rules are defined here as those yielding large scale space-time configurations
interacting over a relatively long time, that is having relatively long transients before reaching their
attractor, where the dynamics along the transient is clearly "interesting”. The human mind is uniquely
qualified to recognise complex patterns such as interacting gliders, and to separate the interesting

* The A parameter for a binary CA is the fraction of 1s in the the lookup table (Langton 1990). Aratio
(Wuensche and Lesser 1992a) also refered to in this chapter, is a normalised form of A to allow direct
comparison with the Z parameter. Aratio is defined in chapter 5.11.10. Z is defined in this chapter 4.12.
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from the trivial, but it would be extremely useful to have a measure that corresponded closely to our
subjective classification. An entropy variance measure on the dynamics seems to achieve this end,
and allows a virtually unlimited sample of glider rules and related complex rules to be found,
distinguishing rule-space between order, complexity and chaos.

Most rules captured by the entropy-variance measure turn out to be glider rules, but other types of
interesting dynamics are also captured, for example two statistically different competing chaotic
domains, or a glider domain co-existing with a chaotic domain. The method entails measuring the
frequency distribution of blocks of size k, where k is the neighbourhood size. This corresponds to the
frequency of lookup of different neighbourhoods in the CA rule's lookup table. The measure may be
taken relative to each time-step or smoothed over a moving window of time steps. The entropy of
this frequency distribution, referred to as the "input entropy" is calculated, followed by its variance
(or the equivalent standard deviation) over an interval of time-steps.

Whereas order (low entropy) and chaos (high entropy) both exhibit low variance after the
dynamics has settled from a random initial state, only complex dynamics continues to exhibits high
variance for an extended time. To understand why this is imagine two converging gliders against a
uniform background, the input entropy will be low because the frequency distribution of k-blocks
will be uneven, made up just of background and glider configurations. The eventual collision may
produce a temporary chaotic region in the space-time pattern causing the frequency distribution of -
blocks to even out and the entropy to rise. The chaotic region will then re-organise itself into new
gliders causing the entropy to drop, and these gliders will re-collide in turn, and so on. If the block
size is taken as larger than k this effect is amplified. Some glider rules may nevertheless have low
input-entropy variance where gliders exist against background domains with large spatial and
temporal periods, for example rules 110 and 54. However these cases may be captured by the
measure if the block size is taken as larger than .

The automatic method for classifying rule-space takes many thousands of rules at random and
plots average entropy against entropy variance. Large samples of glider rules and related complex
rules for various & values have been assembled. As k increases, both complex rules, and to an even
greater extent ordered rules, become less frequent. The frequency can be estimated. The methods
and results are described.

This method of finding glider rules supersedes a subjective method of artificially selecting
random mutations described in (Wuensche 1994a) similar to a proposal by Li (1989). Here, a rule is
selected at random from a likely region of rule space according to the Z parameter. While watching
the space-time pattern iterating on the computer screen, the rule is mutated by random bitflips,
bitflips-back, or bitflips that raise or lower Z, to mutate rules until interacting gliders in the space-
time pattern become apparent. Alternatively, starting from a glider rule, other glider rules may be
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easily found, suggesting that related glider rules separated by small Hamming distances occur in
clusters in rule space. As k increases, the difficulty of the search rapidly escalates because the search
space grows as 22% .

About. 60 glider rules found by this method are shown in appendix 2 and 3 (also in Wuensche
1994b). Figures 4.4-4.6 gives some further examples of the hundreds of glider rules and related
complex rules found by the automatic entropy-variance method. Glider dynamics is of prime interest
as a simple example of emergence, and its study based on a large sample is now possible.

In addition to rule parameters and local measures on dynamics, a variety of global measures on
the topology of attractor basins® have become available. Using the program Discrete Dynamics Lab
(DDLab, Wuensche 1996) attractor basins (described in chapter 2) can be reconstructed, and their
topology can be characterised both statistically and explicitly. For example, measures can be taken
on the number and size of basins, periods of attractors and length of transients. Related to these
measures are the density of garden-of-Eden states, those without pre-images, and how this varies
with system size. More generally measures can be made of the distribution of in-degree
characterising the typical "bushiness” of attractor basins. These measures relate to order, complexity
and chaos as seen in local dynamics. Order corresponds to shdrt, bushy transient trees, attractors
with small periods and high garden-of-Eden density. Chaos corresponds to the opposite, very long -
sparsely branched transient trees, attractors with very large periods and lower garden-of-Eden
density. For complex dynamics these measures lie somewhere in between. A histogram of the
in-degree distribution shows contrasting profiles for order and chaos, whereas for complexity the
distribution appears to follow a power law. These results are presented.

This chapter gives a brief review of CA architecture, space-time dynamics, and the Z parameter.
The reverse algorithm for computing CA pre-images and thus reconstructing their attractor basins is
described. With the benefit of a large sample, glider and related complex dynamics is discussed with
examples. The method of categorising rules by input-entropy variance is explained. Results on the
distribution of large random samples of rules according this measure are presented. These are tested
against a subjective expectation of behaviour. These local measures and attributes, together with the
global measures on attractor basins and the rule parameter Z, are related to each other with the aim
of quantifying notions of order, complexity and chaos in one-dimensional CA.

* The term attractor basins refers to all of the following: basin of attraction fields, individual basins of
attraction, subtrees or fragments of sub-trees.
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Figure 4.1. Typical space-time patterns of a family of S-neighbour (¥=5) rules. The rules a, b, c, d,
e, f, g, range through ordered-complex-chaotic dynamics. a, b, d, g, correspond to Wolfram's classes
1,2,4,3, where "d" (class 4) shows glider interactions. Starting with this rule, the other rules where
evolved by mutating the rule table to progressively force the Z parameter higher (towards chaos) and
lower (towards order). The rule number is shown in hex (see this chapter 4.2), together with and its
Aratio (1d-r) and Z parameter. The space-time patterns were generated from the same random initial
state, system size #=150. Time proceeds from the top down. Attractor basins and in-degree
histograms for a, d and fare shown in figures 4.28 - 4.31.
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Figure 4.2.1d CA architecture, periodic boundary
conditions. Neighbourhood size =5, system size n.
All states update synchronously according to the
states of the k neighbours at the previous time-step.
Flattening out the "cylinder", split between »-1 and
0, gives the space-time pattern representation as
shown in figure 4.1 and elsewhere, where the
direction of time is from the top down.

4.2. One-Dimensional CA architecture

A CA is a self-contained discrete dynamical system, where space is a lattice of cells with a regular
geometry. Cells update their values, chosen from a finite alphabet, as an invariant function of a
standard neighbourhood template (the neighbourhood). Updating is synchronous in discrete time-
steps. u '

This chapter considers the simplest CA architecture. The alphabet's size is just 2 (0,1). Space is
a one-dimensional ring of n cells (periodic boundary conditions). A cell's neighbourhood (size k) is a
continuous zone of cells, centred for odd k, and with an extra cell on the right for even & (in the
convention used here). Most examples in this chapter are for /=5, 6 and 7. A diagram of the system
is shown in figure 4.2. ‘ _

Consider a periodic 1d lattice with n cells and a size & neighbourhood. 71t and rright are the
neighbourhood radii to the left and right, where k= reg +1+ rright. The time evolution of the i-th cell
is given by,

+) _ ) ) P 0)) )
O = I p C1 P C0 e C)

+ 7 right
to satisfy periodic boundary conditions, for x<1, C=Cpsy forx>n, C=Cypy

A neighbourhood of size k has 2 permutations of values. The most general expression of the
transition function f is a lookup table (the rule table) with 2% entries, giving 22 possible rules. Sub-

categories of rules can also be expressed as simple algorithms, Boolean derivatives (Vichniac 1990),
totalistic rules (Wolfram 1984a) or threshold functions. The number of effectively different rules is
reduced by symmetries in the rule table (Walker 1971, Wuensche and Lesser 1992a). By convention
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the rule table is arranged in descending order of the values of neighbourhoods (Wolfram 1983), and
the resulting bit string converts to the decimal or hexadecimal rule number.
For example, the rule table for the =3 rule 30 (hex /e) is,

7 6 5 4 3 2 1 0  <«mneighbourhoods (decimal)
111 110 101 100 011 010 001 000 <neighbourhoods (binary)
0 0 0 1 1 1 1 0  <«outputs

The rule table for the k=5 rule 906663673, hex 36 0a 96 P, is,

neighbourhoods 31— 0 (shown vertically) ,
leftcell» 1111111111111111 0000000000000000
o 111111100000000 1111111100000000
centrecell> 1 111000011110000 1111000011110000
. 1100110011001100 1100110011001100
rightcell-» 1 010101010100101 1010101010101010
outputs—> 0011011000001010 1001011011111001

k 2 5 rules are referred to by their hexadecimal rule numbers for simplicity, but =3 rules are
also referred to by their more familiar decimal rule numbers.

4.3. Space-time patterns and basins of attraction

In this chapter, two aspect of CA behaviour will be related, local dynamics as seen in the space-time
patterns of individual trajectories, and global dynamics as seen in the basin of attraction field, or
samples of the field, individual attractor basins or subtrees, collectivly refered to as attractor basins.

We will briefly review network dynamics in terms of attractor basins, described in greater detail
in chapter 2. A space-time pattern represents a single determined trajectory through state-space. An
initial pattern or seed assigned to the CA lattice at time I, sets off a succession of patterns at times 7,,
1y, 13,... by the iteration of the CA rule. The future dynamics is determined yet unpredictable; there
seems in general to be no short cut for knowing the future more efficiently than by performing the
actual iterations themselves (Wolfram 1986). The sequence of iterated states is a trajectory, and may
be represented by a space-time pattem diagram. This is shown as successive rows of cells (the
circular lattice in figure 4.2 is opened out), coloured according to value; O-white, 1-black. The
direction of time is down.

A CA state has just one successor, but may have an arbitrary number of predecessors (its pre-
images). States with no pre-images are so called garden-of-Eden states. They cannot be reached by
normal CA evolution, but must be imposed from outside. Although a seed determines a single
future, each iteration may have many past histories.
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garden-of-Eden

Figure 4.3. Above: a detail showing the
topology of a typical transient tree. System
size 16, k=5 rule 96 8c 4f 76 (appendix 2.7).
Right. the tree is indicated in the basin of
attraction field. There are 16 basins in the
field; 11 non-equivalent basins are shown.
The tree belongs to a smaller basin with 1712
states. The largest basin has 25488 states.

The state-space of a CA with 7 cells is 2”. Any path inevitably encounters a repeat of a previous
state, and must lead to a state cycle (the attractor). The attractor may have just one state, a stable
point cycling to itself, or may have an arbitrarily long period". The set of all possible pathé leading
to the same attractor, including the attractor itself, make up a basin of attraction, a concept familiar
from continuous dynamical systems. State-space is typically divided into many basins, the basin of
attraction field.

A trajectory is just one particular path within a basin of attraction. A transient is the portion of
the trajectory outside the attractor cycle and usually merges with other transients to form a branching
tree with garden-of-Eden states as the leaves. A sub-tree is a branch of the transient tree. Basins of
attraction typically have a topology of trees rooted on cycles.

*The attractor period for a 1d CA with periodic boundary conditions cannot , however, exceed 2/-m, where m
is the number of states in state space made up of repeating segments on the circular lattice (Wuensche and
Lesser 1992a). ’
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4.4. Computing CA pre-images

Constructing a basin of attraction or subtree poses the problem of finding the pre-images of each
state. A possible method is to construct an exhaustive map resulting from network dynamics and to
scan the map for pre-images, (as described in chapter 3.7) but this becomes computationally
intractable as the network's size increases beyond modest limits. However, a reverse algorithm that
directly computes pre-images for one-D CA, without the need for an exhaustive map, has been
invented by the author (Wuensche and Lesser 1992a). Using this algorithm the network's dynamics
can be run backwards in time; backward trajectories will, as a rule, diverge. The DDLab source code
of the function that implements the algorithm (for any £, and for mixed rules) is shown in appendix
6.2. Appendix 7.2 describes network size limitations and time issues.

A different though related reverse algorithm for RBN (Wuensche 1993a) described in chapter 5
also applies to CA which are a subset of RBN. These alternative methods serve as a useful reality
check on the correctness of the computed pre-images.

The CA algorithm is described below.

Consider a 1d CA with » cells and neighbourhood size k. The algorithm will be demonstrated
for a neighbourhood #=3. Equivalent algorithms apply for other values of #. The system is shown
asaldarray, 4, A, 5...4, A,.

Consider also a #=3 lookup table defining the CA rule as follows, where T, denotes the output
of the neighbourhood whose decimal equivalent value is d.
111 110 101 100 011 010 001 000 ...neighbourhoods
rule-table... 0 0 1 1 0 0 1 0 -..example outputs (0 or 1)
T, T, T, T, T, T, 1, 7T,

To derive the pre-images of an arbitrary global state, consider a partial pre-image where the
start string, the left k-1 cells, is assigned a pattern of Os and 1s from the 2%-1 possible.

Because the boundary conditions are periodic, start strings are assigned to P,P, , for k=3. For
other values of k appropriate start strings are assigned in the same way, for example for #=5 the start
string is P, PyP, P, ,. for an asymmetric neighbourhood such as =4 with the extra cell on the right
the start string is P,P, P, ,.

The remaining cells are empty or unknown, unallocated as either 0 or 1. Empty cells are
denoted by the wild card star symbol ¥, known cells (with values established as 0 or 1) are denoted
by the block symbol O.

Consider a known network state, Ay Ay ... Ay.and the partial pre-image state P,,_l P,...P,
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PP, P,P,P, P, P, P, P, P,

partialpre-image... O O % % # % % % % # (0O
known state . . . 000000 agagoao
A Apy A3 A,y - - Ay A, A A,

Starting with the known cell, P, , (at the centre of the 4=3 neighbourhood PP, P, ,) find the
value of the next unknown cell to the ﬁght at P, ,, consistent with the lookup table. More generally,
knowing the partial pre-image from the left up to P; find the value of the next unknown cell to the
right of P; at P, The known cell values at P, P correspond to two entries in the rule table. When
the outputs of these two entries of are compared with each other and with 4; there are three possible
consequences. The permutation is either deterministic, ambiguous or forbidden.

Pn'+l P, i P, i-1
neighbourhood.. . . . .. o 0o % compare the two outputs of P, ,P;%
known cell . . . a with each other and with and 4,
A,

(1). Deterministic permutations ,
if the outputs of the two neighbourhoods P, ,P;3 are different,
ie.if P,,P,0 T,and P,,P,1 9 notT
then the value of P, , is uniquely determined, and can be filled in as known.
(2). Ambiguous or forbidden permutations
if the outputs of the two neighbourhoods P, P are the same,
ie. both. P,,P;0 and P,,,P;1 =» T, there are two possible consequences, -
(2a). Ambiguous permutation
If T= A, then both 0 and 1 are equally valid solutions for P_,. The partial pre-image must
be duplicated with P, ;=0 in one partial pre-image and P, =1 in the other.
(2b).Forbidden permutation
If T # A, then P, ; has no valid solution and the partial pre-image is rejected.

If P, has a valid solution (i.e. the permutation is deterministic or ambiguous) the procedure is
continued to find the value of the next empty cell to the right, P,,. If the permutation is ambiguous
both alternative partial pre-images will need to be continued. In practice one is assigned to a stack of
partial pre-images to be continued at a later stage. As the procedure is applied to determine each
successive unknown P, ; towards the right, any incidence of an ambiguous permutation will require a
partial pre-image to be added to the stack. A
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To increase speed and minimise the growth of the partial pre-image stack, forbidden
permutations are also checked towards the left, i.e. of the form,

P +1 P i I,i-l
neighbourhood . . . . .. * 0O 0O
known cell . . . O
A.

4

* In the case of an ambiguous permutation, given one of the solutions i.e. P;,;=0, a check is made
on whether the next permutation one place further to the right at P, , (as shown below) is forbidden,

P, P, P,
neighbourhood . ... .. 00 %
knowncell... O

Ay

If this is the case the unique solution P, ;=1 is entered.

The procedure is continued to the right to overlap the assumed start string P, and P, , to check
if periodic boundary conditions are satisfied. If not the pre-image is rejected. For k%3 a larger or
smaller overlap needs to be checked. If the boundary conditions are satisfied the pre-image is valid.

The procedure is re-applied to each partial pre-image taken from the partial pre-image stack,
starting at the first unknown cell. Each time an ambiguous permutation (2a) occurs a new partial pre-
image must be added to the stack, but the stack will eventually become exhausted, at which point all
the valid pre-images containing the assumed start string of P,P,, will have been found. The
procedure is repeated for each of the remaining values of P,P, ,, (or the appropriate start string for k
#3).

The reverse algorithm is applied from left to right in DDLab, but is equally valid when applied
from right to left. )

The reverse algorithm for computing pre-images works for 1d CA and also for networks with
CA-like wiring, i.e. with a local neighbourhood of homogeneous size k, but where the rules may be
different at each site. Provided that the neighbourhood is small as compared to network size, k<<n,

the algorithm is many orders of magnitude faster than constructing and scanning an exhaustive map
as described in chapter 3.6.
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4.5. Constructing and Portraying CA Attractor Basins

Once the pre-images of a state are known, the information is applied to construct the pre-image fan,
from the given state to its set of pre-images (if any). The pre-image fan for each pre-image is then
computed, and so on, until only garden-of-Eden states remain. In this way transient trees (or sub-
trees) are constructed. A basin of attraction (or the complete basin of attraction field) is constructed
by first running the network forward to reveal the attractor cycle, then computing each transient tree
in turn.

In the computer diagrams of attractor basins drawn in DDLab, representations of global states
are linked by directed arcs. Each node will have zero or more incoming arcs from its pre-image
nodes, but because the system is deterministic, exactly one outgoing arc (one out-degree). Nodes
with no pre-images have no incoming arcs, and represent garden-of-Eden states. The number of
incoming arcs to a node is its in-degree.

The methods and the graphic conventions are explained more fully in chapter 2 and (Wuensche
and Lesser 1992a).

Figure 4.3 shows the basin of attraction field of a k=5, n=16 CA, with a detail of the topology of
a typical transient tree rooted on an attractor cycle. The CA has organised the 21=65536 states in
state-space into a field with 16 basins of attraction. Because of rotation symmetries in the circle of
cells, some of these basins, and also transient trees within basins, are equivalent to each other (see
Chapter 1.4). Only the 11 non-equivalent basins in the basin of attraction field are shown.

4.6. Complex rules and Gliders

Whether or not a rule is described as ordered, complex or chaotic has depended to a large extent on
a subjective appraisal its typical emergent space-time patterns. Each CA rule self-organises its space-
time patterns in a characteristic way, and these patterns are often recognisable given our talent for
pattern recognition. For & < 5 rules a characteristic structure to the pattern is apparent even when the
space-time patterns appears chaotic. This becomes less obvious for larger k. The characteristic
pattern structure of different rules can be analysed in formal language theory as a "regular language”
with a vocabulary made up of bit sequences and a "grammar” made up of succession rules between
sequences (e.g. Wolfram 1984b), and by a related "computational mechanics" approach (Hanson
and Cruchfield 1996). |

Certain space-time pattems appear especially interesting or intriguing. Within the overall space-
time pattern, periodic sub-patterns may emerge, move across a regular background, and interact with
other periodic sub-patterns in a particle-like manner. Conway's "game of Life" is perhaps the most
interesting example of a 2d rule that support this behaviour (Conway 1992). The term "gliders” used
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in this chapter is borrowed from him. Figure 1.1. shows an example of a 2d space-time pattern of the
"life" rule as an isometric projection (as if looking up at a transparent box). Time proceeds from the
top-down on the vertical time axis. Gliders appear as regular diagonal features.

Glider dynamics corresponds to Wolfram's Class 4 behaviour in his classification of CA
dynamics (Wolfram's 1994a). He conjectures that this most complex class 4 behaviour is capable of
universal computation. Wolframs lists his classes in order of increasing complexity of their typical
space-time patterns as measured in formal language theory (Wolfram 1984b), and draws analogies
with classical continuous dynamical systems theory in terms of the attractors typical of each class.
His classes are as follows, -

class description in CA dynamics dynamical systems analogue
L Tends to a spatially homogeneous state. . . . .. limit points.
2. Yields a sequence of simple stable
or periodic structures. . . ................... limit cycles.
3. Exhibits chaotic aperiodic behaviour. . . . . ... . chaotic (strange) attractors.
Yields complicated localised simctures,
somepropagating. ... ..................... attractors unspecified.

Langton (1990) and others have argued correctly that Wolfram's class 4 more naturally belongs
between classes 2 and 3, at a phase transition between order and chaos, the so called "edge of
chaos”, which can be traversed by tuning the A parameter. For binary rules tuning the Z parameter
gives a finer correspondence with observed space-time pattern behaviour, as well as relating
behaviour to the topology of attractor basins. It will be shown that complex rules have intermediate
topology between order and chaos, including measures of the garden-of-Eden density and the profile
of the in-degree histogram. For these reasons class 4 is relocated between 2 and 3. Classes 1 and 2
are combined because many ordered rules have both limit points and short limit cycles, though one
or the other may predominate. Wolfram's rule classes are readjusted here as follows:

ordered (class 1 and 2) - - - - - - complex (class 4) - - - - - - chaotic (class 3)
Figures 4.4-4.6 shows some examples of complex dynamics taken from the sample
automatically generated by input-entropy variance for A&=5, k=6 and k=7 rules, and further examples

are shown in appendix 2 and 3. The space-time patterns shown were to some extent selected for an
interesting view of glider interactions by varying the initial random seed. The gliders and other
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Figure 4.4. k=5 complex space-time pattems with high input-entropy variance from the automatic
sample, #=150, 140 time steps from a random initial. The rule numbers are shown in appendix
5.1.5. index 2-21. See appendix 5.1.1 for examples of ordered and chaotic rules.
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Figure 4.5. =6 complex space-time patterns with high input-entropy variance from the automatic

sample, #=150, 140 time steps from a random initial state. The rule numbers are shown in appendix
5.2.5. index 2-21. See appendix 5.2.1 for examples of ordered and chaotic rules.
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Figure 4.6. =7 complex space-time patterns with high input-entropy variance from the automatic

sample, #=150, 140 time steps from a random initial state. The tule numbers are shown in appendix
5.3.5. index 2-21. See appendix 5.3.1 for examples of ordered and chaotic rules.
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Figure 4.7. Gliders with various velocities and backgrounds. The hex rule numbers (deﬁned in 4.2)
and relevant appendix pages are shown.

complex structures are seen emerging rapidly in periodic arrays of size 150-200. It should be noted
that although this is a reasonable size, there may be rules that appear chaotic when limited to this
size but which allow complex dynamics in larger sized systems, requiring a longer time for wider
gliders to emerge. ‘

What are the essential features of glider behaviour based on our sample? Glider dynamics
occurs if a limited set of self-sustaining configurations emerge from random initial states, and if the
interactions between configurations persist for an extended time before settling into a relatively short
attractor. The configurations are static, or propagate at varions velocities up to a maximum, the
system's speed of light. They exist against a uniform or periodic space-time background which of
necessity has simultaneously emerged. This regular background may be simple, such as a

\checkerboard, or a more complicated pattern.

Appendices 2 and 3 present samples of about 60 1d CA rules with glider-like characteristics.
These rules were found before the automatic method for finding complex rules was implemented.
The rules were evolved by the method described in section 4.1, or found by accident. Several are
borrowed from other sources (Aizawa ef al 1990, Li 1989, Wolfram 1986a, Wuensche and Lesser
1992a). Appendix 2 presents 36 rules, each with a typical space-time pattern, 200 cells x 480 time-
steps, a detail showing glider collisions, and the basin of attraction field including significant data
for a system size of 16. Appendix 3 presents 26 further rules, each with a typical space-time pattern,
150 cells x 460 time-steps, showing the lookup frequency histogram and entropy plot alongside
(described in section 4.17 below).

42



Figure 4.8.

Glider collisions against a
quiescent background (all
0s). #=5 rule 5¢ 6a 4d 98
(appendix 2.4).

Figure 4.9.
A glider forming the
boundary between two

different periodic back-
grounds.

k=5 rule bc 82 27 Ic
(appendix 2.9).

Although there are borderline cases, space-time patterns made up of "interesting” glider
interactions are generally easily recognised in contrast to patterns. that stabilise rapidly to fixed
points or short periods on the one hand, or where chaotic patterns persist on the other. The
borderline cases verge either on ordered or chaotic behaviour. Chaotic behaviour may also contain
distinct chaotic backgrounds or domains (Crutchfield and Hanson 1993), where filtering is required
to uncover domain walls analogous to gliders.

The space-time patterns in our sample show many examples of gliders within a periodic space-
time background or a uniform background. Some examples are given in figure 4.7-4.15. A uniform
background (all white or black) has a period of one in both space and time. Gliders may be regarded



appendix 2.18

K5 rule 36 0a 96 9, appendix 26 XS5 rule 97 8e ce o4,

KS rule 5¢c 6a4d 98 appendix 2.4
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K5 rule = 6c le 53 a8, figure 12
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r, glider velocity varies from 0 to a maximum of r cells per
44

preserving their shape and velocity after interacting with other

2

as solitary waves within the background. Gliders may have the special property of solitons (Aizawa

et al 1990, and see appendix 2.12)
period one, is limited to velocities of 0,1,2,...,7 per time-step. Gliders with periods greater than one

Figure 4.10. Examples of glider-guns. The hex rule numbers and relevant appendix pages are
time step towards the left or right. A glider configuration that repeats at each time-step, i.e. with

shown.
may have intermediate fractional velocities.

solitons. For a neighbourhood of radius
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Figure 4.11. Example of ordered domains
co-existing with a chaotic domain. /=7 rule
Je 40 f5 96 18 oa 98 6e ba ba 9e 06 fe ac
d4 e4

Figure 4.12.

A glider colliding with a
compound glider creating
a complicated glider-gun.
k=5 rule 89 ed 71 06.

Figure 4.13. Far lefi: a glider with a large diameter and
period. The diameter varies between 22 and 42 cells, the
period is 402 time-steps. Lefi: a collision between two large

- gliders creating a third large glider. k=5 rule 82 26 dc 23
(appendix 3.2). -

45



L
ey G S A
W et
5 . i

o
>

e
R
' Figure 4.15.
A compound glider made
up of two independent
gliders locked into a cycle
Figure 4.14. of repeating collisions.
A glider with a period of 106 time-steps. k=5rule 89 ed 71 06,
k=5 tule b5 le 9c e8 (also figure 4.17) (appendix 3.5).

A glider’s attributes are the background pattern and spatio-temporal period (on both sides of the
glider), the glider's temporal period and velocity, its changing diameter, and the list of its repeating
configurations. The same description might be applied recursively to each sub-glider component of a
compound glider.

From a random seed, a limited number of different glider types emerge after an initial sorting
out phase and continue to interact by collisions for an extended time, for example figure 4.1(d).
Collisions between two glider types often result in a third glider type (or more). One or both of the
gliders may survive a collision with a possible shift in trajectory, or both gliders may be destroyed.
In some cases a collision initially results in a chaotic interaction phase, before the final outcome
emerges. The outcome of a collision is sensitive to the point of impact relative to the space-time
period of each glider.

The emergence of gliders implies the emergence of one or more periodic backgrounds. A glider
generally represents a dislocation or defect of varying width in the background, which is often out of
phase on either side of the glider, analogous to fracture planes in a crystal lattice. Alternatively, a .
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glider may be seen as the zone that reconciles the two areas of out-of-phase background. A glider
may separate two entirely different backgrounds, acting as the boundary. The example in figure 4.9
has three different backgrounds. Gliders that eject a stream of sub-ghders at regular intervals, as in
figure 4.10, and gliders that survive by absorbing a regular glider stream, as in figure 4. 7(d), are
relatively common in the samples. They are analogous to glider-guns and eaters in the "game of
Life" (Conway 1982). Because a regular glider stream is essentially the same as a regular periodic
background, a glider-gun creates a background, and a glider-eater absorbs a background. Glider-
guns/eaters are thus equivalent to a glider forming the boundary between two backgrounds.

Both the period and diameter of a glider may be considerable. The diameter may show a large
variation within the period. The example in figure 4.14 shows a glider with a period of 106 time-
steps. The example in figure 4.13 (eff), shows a glider with a period of 402 time steps; its diameter
varies between 22 and 42 cells. A further example of the same rule in figure 4.13 (right) shows a
collision between two large gliders creating a third large glider. Clearly such glider interactions can
only emerge in systems large enough to contain them.

The existence of compound gliders made up of sub-gliders colliding periodically may be
expected in large enough systems. Compound gliders could combine into yet higher order structures
(Langton 1986), and the process could unfold hierarchically without limit. The example in
figure 4.7(d) shows a compound glider made from a glider-gun and a parallel glider-eater which
absorbs the sub-glider stream; the compound glider can have an arbitrary diameter. A compound
glider-gun is shown in figure 4.10(d). Figure 4.12 shows a compound glider colliding with two
gliders creating a compound glider-gun. The compound glider is made of two independent gliders
locked into a cycle of repeating collisions, a detail is shown in figure 4.15.

Compound gliders are analogous to the glider/gun/eater interactions engineered by Conway
(1982) to make logical gates and an external memory to demonstrate that his 2d "game of Life" CA
is capable of universal computation. Others have demonstrated universal computation by glider
interactions in simple 1d CA, but with cell states greater than binary (Smith 1971, Lindgren and
Nordahl 1990). An example of a kind of self-reproduction is seen in appendix 2.6 (rule 3a 48 b5
c4), where gliders eject close mirror image copies of themselves with opposite velocity. A third
glider kills off the reproducing gliders, checking overcrowding. Gliders may be seen as analogous to
autocatalytic sets of polymers in that a configuration C| sets off a sequence of transformations, —C»
—=C3—>... =C}, with catalytic closure (Kauffinan 1993). Members of such sets have a survival
advantage in occupying space, and the set acquires its own identity as an independent higher level
object. '

Once gliders have emerged, CA dynamics may in principle be described at a higher level, by
glider collision rules as opposed to the underlying CA rules.
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Figure 4.16. Top: the basin of attraction field of a k=7 rule from
appendix 3.6 consisting of 89 basins, the 11 non-equivalent basins
are shown. n = 16. Equivalent transient trees are suppressed apart
from their garden-of-Eden states, Centre: a detail of the second
basin. Bottom lefi: data on each basin and the field is given in the
table according to the key in appendix 2.1. The k=7 rule number in
hex is 3b 46 9c Oe e4 f7 fa 96 9 3b 4d 32 b0 9e d0 €0, (see appendix
3.6, bottom left).
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4.7. Glider interactions and basins of attraction.

It is possible to identify classes of configurations that make up different components of the basin of
attraction field in glider rules. In states chosen at random, all configurations occur with equal
probability, so the special glider-background configurations are unlikely to be picked.Non-
glider/background states make up the majority of state space, and are likely to be garden-of-Eden
stateé, or states just a few steps forward in time from garden-of-Eden states. They occur in the initial
sorting out phase of the dynamics and appear as short bushy dead-end side branches along the length '
of long transients, as well as at their tips.

States dominated by glider and background configurations are spé?ial cas'és, a small sub-
category of state-space. They constitute the glider interaction phase, making up the main lines of
flow within the long transients. This has also been noted by (Gutowitz and Domain 1995), who
described the main lines of flow as the topological skeleton of physically relevant states and the
short dead end side branches from garden-of-Eden states as a skin of non-physical transitional states,
comprising the bulk of the-nodes in an attractor basin.

Gliders in the interaction phase can be regarded as competing sub-attractors, with the final
survivors persisting in the attractor cycle. Finally, states made up solely of non-interacting gliders
configurations (i.e. having equal velocity), or backgrounds free of gliders, must cycle and therefore
constitute the relatively short attractors, with a period depending on the glider velocity. Attractor
states themselves are a small subcategory of possible glider/background configurations, and thus
form a tiny subcategory of state-space. By simply looking at the space-time patterns of a glider rule
from a number of different initial states, most gliders in its glider repertoire (relative to the system
size) may be identified. A complete list would allow a complete description of all the attractors in
state-space, by finding all possible permutation of non-interacting gliders.

Figure 4.16 shows a typical basin of attraction field of a glider rule for /=7, n=16. Here the
system size is too small to support glider interactions, nevertheless the figure gives some flavour of
the topology expected. Fragments of subtrees can, however, be computed for sizes that are large
enough to support gliders. Exampes are shown in figures 4.31 and 4.33 were #=50 and 150.

4.8. Parameters and measures.

What parameters and measures are thefe to distinguish the range of CA dynamics from ordered to
chaotic, and in particular to identify complex rules?

A number of alternative measures of CA behaviour, including complexity measures, have been
proposed. For example regular language complexity (Wolfram 1984a), related measures based on
deBmijn diagrams (McIntosh 1990), complexity measures related to computation (Langton 1990,
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Li ef al. 1990, Crutchfield and Young 1989), information storage and prediction (Grassberger
1986), net information gain (Bates and Shepherd 1993), block probability distribution (Lindgren and
Nordahl 1988), statistics on transient length (Gutowitz 1991), mean field theory (Gutowitz and
Langton 1995), and correlation function and mutual information (Li 1990a). Other measures of
complexity relate to entropy and information theory (e.g. Zurek 1990), such as algorithmic
complexity and logical depth (Bennet 1986). These various approaches relate to each other and
possibly to glider emergence, but a comparative discussion must be left for another occasion.

The following sections describe results based on a number of new measures. Firstly the
variance of the input-entropy, a local measure on space-time patterns to distinguish glider rules,
where the mean entropy distinguishes ordered and chaotic rules, Secondly, the new software tools
available for constructing attractor basins and subtrees allows a close look at the relationship
between basin topology and space-time patterns. Global measures on basin topology are provided by
garden-of-Eden density and more generally by a histogram of in-degree distribution. These measures
may be taken on the whole basin of attraction field for small systems. For large systems the
measures are taken on subtrees or fragments of sub-trees. Local and global measures are related to
each other and to the rule-parameter Z, which is defined in 4.12. Z is compared and related to the
well known A parameter (Langton 1990).

4.9. Neighbourhood lookup frequency and input-entropy

Gliders and backgrounds are built from a set of self sustaining configurations that emerge from an
initial chaotic phase, crowding out all the other many possible configurations to dominate the CA's
future behaviour. In an initial random seed all 2% neighbourhood configurations are equally
probable. If randomly chosen, the seed is likely to be a garden-of-Eden state because garden-of-
Eden states usually make up most of of state space.

Figure 4.17. (opposite page)

Two examples of glider dynamics (top left and 1op right), and an example of both ordered dynamics
(bottom left) and chaotic dynamics (bottom right). System size 150 with periodic boundary
conditions. 460 time-steps from a random seed. An example of the lookup frequency histogram is
shown for the last time-step. A superimposed frequency spectrum is plotted alongside each time-
step, with 2k points corresponding to the histogram values superimposed on one line. The entropy at
each time-step is also shown on the same plot. Rule numbers are shown in hex.
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looking back 1 generation 5 generations 20 generations’

Figure 4.18. The frequency spectrum and its input-entropy plot shown alongside the space-time
pattern from the same initial random seed, relative to one time-step (leff), 5 time-steps (centre), and
20 time-steps (bottom). k=5 rule, b5 le 9c €8, as in figure 4.17 (top lef?).

As the CA evolves beyond the initial sorting out phase, some neighbourhoods will occur more
frequently, others less. A special case of block probability and entropy (Wolfram 1984a) is input
frequency and entropy. The frequency with which each of the neighbourhoods in the rule-table is
"looked up" at a given time-step can be represeﬁted by a histogram, or lookup spectrum, as in
figure 4.17, which distributes the total of 7 lookups among the 2% neighbourhoods (shown as the
fraction of maximum lookups #, where n=system size, A~neighbourhood size).

The Shannon entropy of the lookup frequency histogram, the input-entropy S at time-step ¢, is

given by
k
AT

Where QS‘ ) is the lookup frequency of neighbourhood i at time 7.

For a smoother measure the histogram is taken over a window of time-steps.

Figure 4.17 shows the space-time patterns of two complex rules with emerging gliders, and also
an ordered and chaotic rule for comparison, evolving for 460 time-steps from a random initial state,
r=150. Figures 4.19-4.21 show further examples from the automatic sample. The lookup frequency
histogram is shown for the very last time-step. A superimposed frequency spectrum is plotted
alongside each time-step in the space-time pattern, with 2% points corresponding to the top of the
histogram bars superimposed on one line. The entropy of the lookup frequency spectrum is also
shown for each time step on the same graph.
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Figure 4.19. k=5. rule index 1 in the automatic sample with high entropy-variance.

Measures are made relative to a moving window of 5 time-steps.

Left: The space-time patten #=150 from a random initial state.

Centre: The frequency spectrum and input-entropy plot.

Top right. The rule number, A and Z data.

Centre right: The lookup frequency histogram for the last time-step.

Botiom right: Input-entropy (vertical axis) plotted against the pattern density (the density of 1s).
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Figure 4.20. k=6. rule index 1 in the antomatic sample with high entropy-variance.
Measures are made relative to a moving window of 5 time-steps.

Left: The space-time patten n=150 from a random initial state.

Cenire: The frequency spectrum and input-entropy plot.

Top right: The rule number, 1 and Z data,

Bottom right: Input-entropy (vertical axis) plotted against the pattern density (the density of 1s).
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Figure 4.21. /=7. rule index 1 in the automatic sample with high entropy-variance.
Measures are made relative to a moving window of 5 time-steps.

Lefi: The space-time patten n=150 from a random initial state.

Cenire: The frequency spectrum and input-entropy plot.

Top right: The rule number, 1 and Z data.

Bottom right: Input-entropy (vertical axis) plotted against the pattern density (the density of 1s).
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To compare these measures between ordered, complex and chaotic rules, an example of an
ordered and a chaotic k=5 rule is shown in figure 4.17(bottom), with the same lookup frequency and
entropy data. If a k=5 rule is selected at random, with a probability of 0.5 of setting a 0 or 1 for each .
rule table entry, the rule is likely to be either ordered or chaotic, although there is a significant
chance that it might be a complex rule. The large number of ordered and chaotic rules from the
automatic input-entropy samples (see below) confirm that these examples are typical. Note that as
the neighbourhood k increases, a rule selected at random is more likely to be chaotic.

Because the initial state is set at random, given a big enough system size, the 2¥ bars in the
lookup frequency histogram are likely to be distributed close together at low values. The different
neighbourhoods occur with equal probability. The starting entropy will be comrespondingly high.
Below we discuss the characteristic evolution of the lookup frequency spectrum for successive
iterations of the CA, and the input entropy, for ordered, chaotic and complex dynamics.

4.9.1. Ordered Dynamics

In ordered dynamics the lookup frequency spectrum will rapidly become highly unbalanced, with
most neighbourhoods never looked at (their lookup frequency = 0). The few remaining high
frequencies settle on constant or periodic values. The entropy will settle at a low constant or periodic
value, corresponding to a fixed point or short cycle attractor. Ordered behaviour produces extremely
short and bushy transient trees with a high G-density. Ordered rules decrease disorder and entropy.

4.9.2, Chaotic Dynamics

In chaotic dynamics, the lookup frequency spectrum will fluctuate irregularly within a narrow band
of low values, and the entropy will fluctuate irregularly within a narrow high band, corresponding to
dynamics on very long transients or cycles, analogous to strange attractors in continuous dynamical
systems. Transient trees will be sparsely branched thus will tend to be very long with relatively low
G-density. Chaotic rules increase or conserve disorder and entropy. o

4.9.3. Complex Dynamics -

In complex dynamics, the frequency spectrum becomes unbalanced, breaking up into high and low
strands that exhibit large erratic fluctuations, reflected in large erratic fluctuations in entropy. As in
ordered behaviour, a proportion of neighbourhoods are never looked at again after the initial sorting
out phase; these neighbourhoods are, in a sense, leached out of the system. After an extended time,
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(100s or 1000s of time-steps) the system generally settles onto a short attractor cycle. The high
strands in the superimposed lookup spectrum result from the neighbourhoods making up the
emergent background (or multiple high strands for multiple backgrounds). The low strands are the
lookup frequencies of interacting gliders.

Glider dynamics is subject to two countervailing tendencies. On the one hand a tendency
towards order because of the dominant periodic background(s), but the zones of order are mobile,
their boundaries form the moving particles or gliders. When these collide there is a tendency toward
chaos. The collisions may form a temporary zone of chaotic dynamics before new gliders emerge. In
systems of the order of size considered here, order or chaos may predominate at different times
causing the entropy to vary. For large networks where colliding and non-colliding zones
- co-exist, the entropy variance will be reduced, and could disappear in the limit of infinite size. Thus
glider dynamics on a transient in relatively small networks can both increase and decrease entropy
by large amounts in an erratic manner producing an erratic entropy curve. The entropy starts off high
for the random seed and the initial sorting out phase. It then fluctuates erratically over a wide range
of values during the glider interaction phase, and settles at a periodic or constant minimum level at
the attractor cycle.

Appendix 3 shows some examples of complex rules and their input-entropy plots for &=5, k=6
and 4=7. In these plots the measures are taken relative to each time-step. In subsequent results the
measures are taken over a moving window of time-steps to smooth out the entropy curve and show
only the longer term variation. This is illustrated in figure 4.18, which shows the k=5 glider rule as
in figure 4.17(top-leff). From the same initial random seed, the frequency spectrum and its entropy
plot is shown firstly relative to just one time-step, then for a moving window of 5, and finally for 20
time-steps.

A measure of the variability of the input-entropy curve is its variance or standard deviation
from the mean, high entropy variance is then a sure sign of complex space-time dynamics.

High entropy variance is not only characteristic of glider dynamics but also of other less
frequent types of complex dynamics. For example two chaotic co-existing (competing) domains
which are qualitatively different, having different block probabilities will produce an erratic entropy
curve as one or the other domain becomes dominant. The boundary between the chaotic domains
may be seen an a different type of particle lacking the regularity of a glider. Such particles may be
isolated by filtering out the chaotic domains (Crutchfield and Hanson 1993). A related type of
complex dynamics occurs when a chaotic domain co-exists with glider dynamics or with just a
regular background as in figure 4.11.
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The chaotic rule aa 55 66 al from figure 4.1(f). 1
The scatter plot is concentrated at high entropy
with low variance.

Ho

tITO e
1

Some k=5 complex rules (with high input-entropy
variance) from the sample in appendix 2 and 3.

k=5 complex rules (with high input-entropy
variance) from the automatic rule sample. Their
space-time patterns are shown in figure 4.4.
The rule numbers are shown in appendix 5.1.5,

index 2-22. \

Figure 4.22. Input-entropy (vertical axis) is plotted
against the pattern density (the density of 1s). k=5
rules, »=150. The measures are made relative to a
moving window of 5 time-steps. Top: the chaotic
rule aa 55 66 al from figure 4.1(f). Centre and
bottom: A number of superimposed plots of
complex rules. Note the high variance of the
input-entropy. Each rule produces a plot with its
own distinctive "signature”. Plots were made for
trajectories of about 1000 time-steps, and from
several random initial states for each rule.
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Entropy variance is the basis of an automatic procedure for finding glider rules and related

complex rules, whereas the mean entropy segregates rule-space between order and chaos, explained
in section 4.10-11 below.

4.10. Classifying rules by entropy-density

Entropy-density plots for a number of complex rules are shown in figure 4.19-4.22. Input-entropy
(vertical axis) is plotted against the pattern density (the density of 1s). The plots may be from one or
more random initial states, and the measures are made relative to a moving window of 5 time-steps.
Each rule gives a characteristic cloud of points. For complex rules the clouds have a marked vertical
extent because the input-entropy varies significantly. Each complex rule produces a plot with its own
distinctive signature. By contrast, chadtic rules will give a flat compact cloud at high entropy. For
ordered rules the plot also has a large vertical extent as the entropy falls off, but there are very few
data points because the system moves very rapidly to an attractor.

Gutowitz (1995) has also shown entropy-density plots for large samples of rule-space, but his
plots show a single point for each rule where the measures on that rule have settled down, whereas
the plots shown here focus on the transient history of the system. These plots distinguish order,
complexity and chaos by the vertical extent and density of the cloud.

4.11. Automatically classnfymg rule-space by input-entropy variance

To dlsungmsh ordered, complex and chaotic rules automatically the mean input-entropy taken over a
span of time steps is plotted against the standard deviation of the input entropy. The standard
deviation is given by,

x:
o= 1’ Z d where x; = deviation of each measure from the mean, and » = number of measures.
n

The variance = 62

In the following results for =5, 6 and 7 rules, the input-entropy was measured over a window
of 5 time-steps as the system was run for 430 time-steps from a random initial state. The measures
were only taken into account for the last 400 time-steps, the first 30 were ignored to allow the
system to evolve beyond the initial sorting out phase. The mean input-entropy, and the standard
deviation from this mean, were calculated relative to these 400 time-steps. This procedure was
repeated 5 times from different random initial states for each rule. The measures were averaged and
a point was plotted of mean input-entropy (y axis) against standard deviation. Rules (and initial
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Figure 4.23. Below: Mean entropy (y-axis) plotted against standard deviation for a random sample
of 17680 k=5 rules, =150 (see section 4.11). Above: The distribution of points falling within a
128x128 grid. Chaotic rules are concentrated in the top left "tower", ordered rules in the "ridge"

close to the y-axis with lower mean entropy. Complex rules are spread in the area to the right with
higher standard deviation.

states) were selected at random by setting a 1 or 0 with equal probability for each entry in the rule's
look-up table (and each bit in the initial state).

Figures 2.23-2.25 show the resulting scatter plots for random samples of k=5, k=6 and k=7
rules. The sample sizes are as follows; 17680 k=5, 15425 k=6, 14221 k=7. Each plot is accompanied

by a 2d histogram showing the frequency distribution of points falling within blocks on a 128x128
grid overlaid over the scatter plot.
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Figure 4.24. Below: Mean entropy (y-axis) plotted against standard deviation for a random sample
of 15425 k=6 rules, n=150 (see section 4.11). Above: The distribution of points falling within a
128x128 grid. Chaotic rules are concentrated in the top left "tower", ordered rules close to the y-axis
with lower mean entropy. Complex rules are spread in the area to the right with higher standard
deviation.

0.1

Looking at the k=5 2d frequency histogram, the "tower" in the upper left represents chaotic
rules with low standard deviation and high mean entropy. The ridge on the left represents ordered
rules with low standard deviation and a spread of lower mean entropy. Rules to the right of the plot,
with higher standard deviation are complex rules, though further work is required to specify a
boundary with ordered and chaotic rules. Any standard deviation above the maximum scale has been
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Figure 4.25. Below: Mean entropy (y-axis) plotted against standard deviation for a random sample
of 14221 k=7 rules, n=150 (see section 4.11). Above: The distribution of points falling within a
128x128 grid. Chaotic rules are concentrated in the top ieft "tower”, the few ordered rules are ciose
to the y-axis with lower mean entropy. Complex rules are spread in the area to the right with higher
standard deviation.

reset to the maximum of 1.8. The /=6 and k=7 plots show a greater frequency of chaotic rules and a
declining frequency of ordered and complex rules as & increases.

The rule samples and measures, including the rule's 4 and Z parameters, were saved to file
sorted by decreasing standard deviation, and decreasing mean entropy for each measure of standard
deviation. In appendix 5 examples of complex, chaotic and ordered rules from the sorted sampies
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are shown. The rule samples are also shown in relation to both the rule's A and Z parameter (y axis)
plotted against standard deviation.

To check whether the expected dynamics (recognised subjectively) corresponds to the measures
as plotted, the dynamics of particular rules at different positions on the plots may be re-examined.
This may be done efficiently using DDLab. Examples of dynamics from the plots are shown in
figures 4.4-4.6 and in appendix 5. A preliminary scan indicates that the expected behaviour is indeed
found, but further investigation is required to properly demarcate the space between ordered,
complex and chaotic rules and to estimate the proportion of different rule classes for different .

Input entropy is a local measure on the space-time pattern of -typical trajectories. The
distribution of the rule samples according to these local measures may be compared with global
measures on attractor basin topology, G-density and the in-degree frequency (section 4.15). A
preliminary scan indicates a strong relationship between these global measures and the rule sample
input-entropy plots, but again a systematic investigation of the space is required.

4.12. The Z-parameter

Various parameters have been defined on CA rule tables, notably Langton's (1990) A parameter and
the equivalent idea of internal homogeneity introduced earlier by Walker (1966). An alternative
parameter, Z (Wuensche 1992,1994b) for binary CA tracks behaviour more closely. Whereas A4
simply counts the fraction of 1s in a binary rule table, Z takes into account the allocation of rule-
table values to sub-categories of related neighbourhoods. It is derived from the algorithm for
computing pre-images reviewed in section 4.4 and predicts the characteristic in-degree, the bushiness
of sub-trees in attractor basins corresponding to the degree of convergence of the dynamical flow in
state-space. It is thus a trajectory convergence parameter analogous to an inverse Liaponov exponent
in continuous dynamics. The DDLab source code for calculating Z is shown in appendix 6.4.

As well as predicting convergence, an example of global behaviour, Z gives a good indication
of at least the extremes of Jocal behaviour between order and chaos, both subjectively and as
characterised by input-entropy variance. If a given rule table is tuned through its range of Z values by
small mutations, a progressive change in behaviour between order and chaos is observed. Figure 4.1
shows an example. Suppose that we know part of a pre-image (a partial pre-image) of an arbitrary
CA state, and attempt to deduce the value of successive cells from left to right. The Zjefi parameter is
the probability that the next unknown cell to the right in the partial pre-image has a unique value,
and is calculated directly from the CA rule-table by counting deterministic neighbourhoods, defined
in the next section. Zyight is the converse, from right to left. The Z parameter itself is the greater of
Zlefi and Zright.
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If a partial pre-image ends with a pattern corresponding to a deterministic neighbourhood, then
the next unknown cell must have a unique value, thus preventing the partial pre-image from
bifurcating into two valid partial pre-images, and restricting the potential for growth in the number
of pre-images. This is the basis of the reverse algorithm for determining pre-images (Wuensche and
Lesser 1992a) reviewed in section 4.4, where the leading edge of each partial pre-image is
continuously checked for a match with a deterministic neighbourhood.

Z is a probability, so varies between 0 and 1. If Z is ‘high, the number of pre-images of an
arbitrary CA state is likely to be small relative to system size. For Z=1 it was shown in (Wuensche
and Lesser 1992a) that the maximum in-degree cannot exceed 2%-1, and if only one of Zjeft or Zright
=1, maximum in-degree must be smaller than 2%-1. Conversely, if Z is low, the in-degree is likely to
be relatively high. For Z=0, all state space becomes a single pre-image fan converging on the state
all-Os or all-1s in one step.

4.13. Calculating the Z-parameter

A general procedure to calculate Z from the rule table is described below”.
Let ng= the count of rule-table entries belonging to deterministic pairs of neighbourhoods such
that, '
the neighbourhood, a1,a2,..ay.1,1 = T..(its output)
and ay,as,..a;.1,0 > not T

The probability that the next cell is determined because of the above is given by, Ry =n2k
This is a first approximation of Zieft , as deterministic pairs occur with the highest probability in a
random rule-table. |
Let ny.1 = the count of rule-table entries belonging to deterministic 4-tuples of neighbourhoods
(where "#" is a wildcard value, 0 or 1 with equal validity) such that,
the neighbourhood, a1,a2,..ax.2,1, * = T (its output)
and a},a2,..a;2,0, * > not T

The probability that the next cell is determined because of the above is given by, Rp.=np.12%
Let ny3 = the count of rule-table entries belonging to deterministic 8-tuples of neighbourhoods
such that,
the neighbourhood, a1,a2,..a;.3,1, *, * = T (its output)
and ay,a2,..a;3,0, %, * —> not T

The probability that the next cell is determined because of the above given by, Ryp=nyo2k

*Refer to (Wuensche and Lesser 1992a) for a fuller discussion relating specifically to #=3 and k=S5 rules.
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This count is repeated if necessary for deterministic I6-tuples, 32-tuples,...etc. of
neighbourhoods, up to the special case of just one 2%-tuple which occupies the whole rule-table. The
probability that the next cell is determined on the basis of deterministic pairs, 4-tuples, 8-tuples,
...elc. is given by

Rie=mi/2%,  Rp1=nmj1/2%, Ryp=mpon2k,....

Ry, Ry.1, Ri-2,... are independent non-exclusive probabilities that the next cell is determined.
The union of the probabilities gives Zleft = RPOIRL1UR V..., given by the following expression
(The order of the probabilities makes no difference to the result),

Zieft = Rp+ Re-1(1-Ry)) + Rip2(1-(Rie+ Rie-1(1-Rp))) + Re3( I(Ri-2(1(Re+ Ri-1(1-R))))) + ...
Which simplifies to . . . ’

Zleft = Ric+ Ry.1(1-Re) + Ri2(1-Ri-1 X(1-Ry)) + Ry.3( 1-Ri2)(1-Rp-1)(1-Rp) + ...

And may be expressed as* ZIe = Rk+§ Rk_i[ l—kI(l— Rj)]

i=1 j=k=i+]

where R; = nj/2%, and n; = the count of rule-table entries belonging of deterministic 2%-tuples.

A converse procedure gives Zrighr, and the Z parameter = the greater of Zjef and Zright.

For example, take the k=5 rule 59 89 3a JU with a rule-table set out in the conventional order
(higher value neighbourhoods on the left). Left-to-right n-tuples are conveniently positioned in

adjacent clusters. To calculate Zif, count rule-table entries belonging to deterministic n-tuples of

neighbourhoods. Deterministic n-tuples are indicated thus "__", e e et

neighbourhoods 31— 0 (shown vertically)
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