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Abstract

This paper examines the basins of attraction of random Boolean networks, a very general
class of discrete dynamical systems, in which cellular automata (CA) form a special sub-
class. A reverse algorithm is presented which directly computes the set of pre-images (if
any) of a network's state. Computation is many orders of magnitude faster than exhaustive
testing, making the detailed structure of random network basins of attraction readily
accessidle for the first time. They are portrayed as diagrams that connect up the network's
global states according to their transitions. Typically, the topology is branching trees
rooted on attractor cycles.

The homogeneous connectivity and rules of CA are necessary for the emergence of
coherent space-time structures such as gliders, the basis of CA models of artificial life. On
the other hand random Boolean networks have a vastly greater parameter/basin field
configuration space capable of emergent categorisation.

I argue that the basin of attraction field constitutes the network's memory; but not
simply because separate attractors categorise state space - in addition, within each basin,
sub-categories of state space are categorised along transient trees far from equilibrium,
creating a complex hierarchy of content addressable memory. This may answer a basic
difficulty in explaining memory by attractors in biological networks where transient
lengths are probably astronomical.

I describe a single step learning algorithm for re-assigning pre-images in random
Boolean networks. This allows the sculpting of their basin of attraction fields to approach
any desired configuration. The process of learning and its side effects are made visible. In
the context of many semi-autonomous weakly coupled networks, the basin field/network
relationship may provide a fruitful metaphor for the mind/brain.

Introduction

Recent work in unravelling the global dynamics of discrete dynamical systems such as cellular
automata3! and, more generally, of random Boolean networks323334 allow their basins of
attraction to be explicitly portrayed. These are diagrams that connect up the network’s global states
according to their transitions - typically, the topology is branching trees rooted on attractor cycles.
The diagrams are efficiently constructed with a reverse algorithm that directly computes a state's set
of pre-images (if any).

Following Hopfield®, I argue that attractors constitute the networks “content addressable”
memory; but not simply because separate regions of state space flow to energy minima - in addition,
states space is categorised hierarchically along transient trees far from equilibrium.
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Above. A basin of attraction of a random Boolean network (N=13, [q wiring rule,-table

3,12,6 86, 01010110
7,114 4, 00000100
331 196, 11000100
11,39 52, 00110100
8,75 234, 11101010
A , 181 100, 01100100
Right. The random Boolean network wiring/rule parameters. Wiring v f&o g‘l"l’ggi;g
and rules were assigned at random, except that the neighbourhood 926 6 00000110
000 — 0. 10 511 94, 01011110
11 271 74, 01001010
In continuous deterministic dynamical systems, all possible time | 12 784 214, 11010110

series make up the vector field which is represented by the system's | '3 147 188 10111100

K=3). The basin links 604 states, of which 523 are garden of Eden
states. The attractor has period 7. The direction of time is inwards
Jrom garden of Eden states to the attractor, then clock-wise. The basin
is one of 15, and is indicated in the basin of attraction field in figure
2
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phase portrait, an idea introduced by Poincaré. This is the field of flow
imposed on phase space by the systems dynamical rule. A set of attractors, be they fixed point, limit
cycles or chaotic, attract various regions of phase space in the basin of attraction Jield. Analogous
concepts apply to discrete deterministic dynamical systems, such as cellular automata (CA) and the
more general case, random Boolean networks, which are noise free and update synchronously. An
important difference, however, is that transients can merge onto one successor state far from
equilibrium in these discrete systems, whereas in continuous systems they cannot.

Neither does Hopfield's model® support deterministically merging transients because his
updating method is randomly asynchronous, and thus non-deterministic. It is open to debate
whether synchronous or asynchronous updating in a local network is more or less biologically
plausible. However, synchronous random networks have greater potential as content-addressable
memory systems because not only sttractors categorise state space. Sub-categories of state space are
also categorised by a reliable time-series of unique states along each transient tree far from



the basin in figure 1

Figure 2.

The basin of attraction field a random Boolean network (N=13, K=3). The 2!3=8192 states in
state space are organised into 15 basins, with attractor period ranging from 1 to 7. The number of
States in each basin is: 68, 984, 784, 1300, 264, 76, 3IP6, 120, 64, 120, 256, 2724, 604, 84, 428.
Figure 1 shows the arrowed basin in more detail, and the network's wiring/rule scheme.

equilibrium, creating what is effectively a complex hierarchy of content addressable memory.

The range of topologies of basins of attraction, and the potential for emergent complex
categorisation of network states, suggests that the basin of attraction field, a mathematical object in
space-time, is the network's cognitive substrate - the ghost in the machine32. A basic difficulty in
explaining memory by sttractors in biological networks has been the probably astronomical
transient lengths needed to reach an attractor in large networks, whereas reaction times in biology
are extremely fast. The answer may lie in the notion of memory far from equilibrium along merging
transients34.

CA (of whatever dimension) may be regarded as a special random network sub-class with
homogeneous connectivity and rules. Evidence is presented that this local architecture is necessary
for the emergence of coherent space-time structures such as gliders, the basis of CA models of
artificial life. Random network architecture breaks these two basic premises, the wiring/rule
scheme may be arbitrary and different at each cell, though divergence from CA architecture is a
question of degree. An arbitrary wiring/rule scheme implies @ vastly greater parameter space, and
thus basin field configuration space than for CA. Perhaps any basin of attraction field configuration
1s possible. The process of adaptation and learning modifies the network's parameters, its
wiring/rule scheme or size/connectivity, resulting in a modified basin of attraction field. The
stability of the field under small perturbations to parameters is noteworthy.



This paper describes CA and random network architecture, and contrasts their dynamics in
terms of space-time patterns and basins of attraction. The reverse algorithm for computing pre-
images is explained. I suggest that random networks may provide a component for a biological
model; in the context of many semi-autonomous weakly coupled networks, the basin field/network
relationship may provide a fruitful metaphor for the mind/brain.

I describe learning algorithms that automatically re-assign pre-images in a single step. New
attractors can be created and transient trees and sub-trees transplanted, sculpting the basin of
attraction field to approach any desired configuration. The effects and side effects of learning
become immediately apparent by re-drawing the modified basin of attraction field, or some
fragment of it. Such visible learning may lead to useful applications as well as helping to clarify the
process of memory and leamning in a variety of artificial neural network architectures.

Basins of attraction

CA and random networks are both examples of discrete deterministic dynamical systems made up
from many simple components acting in parallel. The dynamics is driven by the iteration of a
constant global-updating procedure (the transition Junction) resulting in a succession of global
states, the system's trajectory. Given a noise free,- deterministic transition function within an
autonomous system (cut off from outside influence), any global state imposed on the network will
seed a determined trajectory (though it may be unpredictable). In fact the system may be regarded as
semi-autonomous, in the sense that a global initial state must be imposed or perturbed from outside
to set the system going along a new trajectory. The system also needs a channel to communicate its
internal state to the outside.

A trajectory is one particular path within a basin of attraction, familiar from continuous
dynamical systems. In a finite network of size N and value range ¥ there are IV global states. Any
path must inevitably encounter a repeat. When this occurs the system has entered and is locked into
a state cycle (the attractor). Many trajectories typically exist leading to the same attractor. The set
of all such trajectories, including the attractor itself, make up a basin of attraction. This is
composed of merging trajectories linked according to their dynamical relationships, and will
typically have a topology of branching transient trees rooted on the attractor cycle (though this may
be a stable point - an attractor cycle with a period of 1).

Separate basins of attraction typically exist within state space. A transition function will, in a
sense, crystallise state space into a set of basins, the basin of attraction field, a mathematical object
~«1n space-time which constitutes the dynamical flow imposed on state space. If represented as a
- graph the field is an explicit portrait of the network’s entire repertoire of behaviour. It includes all
possible trajectories.

Basins of attraction are portrayed as computer diagrams in the same graphic format as
presented in “The Global Dynamics of Cellular Automata”3!.-Various other names are sometimes
used, for example, flow graphs, state transition graphs, networks of attraction. Global states are
represented by nodes, or by the state's binary or decimal expression at the node position. Nodes are
linked by directed arcs. Each node will have zero or more incoming arcs from nodes at the previous
time-step (pre-images), but because the system is deterministic, exactly one outgoing arc (one out
degree). Nodes with no pre-images have no incoming arcs, and represent so called garden of Eden
states. The number of incoming arcs is referred to as the degree of pre-imaging (or in degree).

Figure 1 shows a typical basin of attraction of a random Boolean network (it is part of the
basin of attraction field shown in figure 2). F igure 4 shows the basin of attraction field of a CA



‘where many symmetries are evident, a major difference between the topologies of the two systems.

In the graphic convention, the length of transition arcs decreases with distance away from the
attractor, and the diameter of the attractor cycle asymptotically approaches an upper limit with
increasing period. The forward direction of transitions is inward from garden of Eden states to the
attractor, which is the only closed loop in the basin, and then clockwise around the attractor cycle.

Typically, the vast majority of nodes in a basin of attraction lie on transient trees outside the
attractor cycle, and the vast majority of these states are garden of Eden states. A transient tree is the
set of all paths from garden of Eden states leading to a particular state on the attractor cycle. A
transient sub-tree is the set of all paths from garden of Eden states leading to a state within a
transient tree, as indicated in figure 1.

Computing transient trees or sub-trees, and basins of attraction, poses the problem of finding
the complete set of pre-images of any global state. The trivial solution, exhaustive testing of the
entire state space, rapidly becomes intractable in terms of computer time as the network's size
increases beyond modest values. A reverse algorithm for 1-D CA, that directly computes the pre-
images of a global state, with an average computational performance many orders of magnitude
faster than exhaustive testing, was recently introduced3!. Section 4 sets out a general direct reverse
algorithm32 for random Boolean networks (which includes CA of arbitrary dimension), and which
may be generalised for random networks with a greater value range. :

Cellular Automata

A CA is sometimes described as a discretised artificial universe with its own local physics!4. Space
is a lattice of cells with a particular geometry; each cell contains a variable from a limited range
(often just O or 1). All cells update synchronously as time advances in discrete steps. The updating
rule is the same for all cells, and depends-only on local relations, usually a closed symmetrical
neighbourhood.

Conversely, one could say that the homogeneous neighbourhood template defines a given
space, and if the CA is finite, implies periodic boundary conditions (i.e. a circle of cells for 1-D, a
toroidal surface for 2-D). Finite 1-D CA architecture is illustrated in figure 3 where cells are
arranged in a circle. Time steps are shown in sequence from the top down.

celll cellN

Figure 3.

1-D finite CA architecture, K=5, each
cell has the same wiring template and
rule. Boundary conditions are periodic
by definition. The network is synchro-
nously updated in discrete time-steps.









































































